Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 179: 216-233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489980

RESUMO

Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Fenóis , Criança , Humanos , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Disruptores Endócrinos/análise , Compostos Benzidrílicos , Plantas/metabolismo
2.
Chemosphere ; 303(Pt 1): 134956, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588873

RESUMO

Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo
3.
Chemosphere ; 298: 134269, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307385

RESUMO

Plastic pollution is a serious issue in the aquatic environments. This concerning issue of negative impacts of synthetic plastic debris particles in the aquatic ecosystem give rise to the bioplastic materials. These bioplastics are synthesized from biological organisms, retaining same structural and functional ability as synthetic plastics. However, their degradability and toxicity in natural environment is still unknown. So, in this study we have focused on to elucidate the toxicity caused by Bacillus subtilis synthesized biopolymer - polyhydroxybutyrate (PHB) microspheres and compare their effects with synthetic plastic. The effect of Synthetic plastic (Polystyrene microspheres) and bioplastic (PHB microspheres) were studied on acute exposure to in-vitro and in-vivo model of Lates calcarifer. PHB microspheres were characterized and confirmed using Flurospectrophotometer, Fourier-Transform infrared spectroscopy (FTIR), Particle size analyzer (PSA), Zeta potential and Scanning electron Microscope (SEM). Histopathology assessment for in-vivo model and MTT assay for in-vitro model were performed. The results of fish exposed to 0.5 µg/ml and 1 µg/ml of both microspheres have shown significant necrosis and alteration in muscle, gill and heart tissues. The increased cytotoxicity observed in spleen cell line of Lates calcarifer on exposure to 0.5 µg and 1 µg of both microspheres. Bioplastics are needs specific times for degradation into the aquatic environment. In these results suggest, that even bioplastic have the risk of inducing toxicity similar to the synthetic plastic.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Ecossistema , Poluição Ambiental , Microesferas , Plásticos/química , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA