Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 25(12): 1133-1145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36450115

RESUMO

We evaluated whether linseed oil (LO) modulates the effects of a high-carbohydrate diet (HCD) on liver inflammation, fatty acid (FA) accumulation, and lipid distribution in periportal and perivenous hepatocytes. The control group (control high-carbohydrate diet [HCD-C]) received an HCD with lard and soybean oil as the lipid source. The L10 and L100 groups received the HCD with 10% and 100% of LO as the lipid source, respectively. The animals were killed by decapitation before (day 0) and after receiving the diets. Liver FA composition, inflammation, and fibrogenesis gene expression were evaluated. Also, the percentage of lipid-occupied area in periportal end perivenous hepatocytes were measured. The L100 group exhibited a higher (P < .05) liver amount of omega-3 polyunsaturated FA (n-3 PUFA) and lower (P < .05) amounts of saturated FA (SFA), monounsaturated FA (MUFA), and omega-6 polyunsaturated FA (n-6 PUFA) compared with L10 or HCD-C mice. On day 56, interleukin 10 and type IV collagen gene expression were significantly upregulated and downregulated, respectively in L100. Also, the L100 group showed lower (P < .05) FA accumulation (i.e., total FA, SFA, MUFA, and n-6 PUFA). Also, L10 and L100 presented lower (P < .05) percentage of high lipid-containing portion in periportal and perivenous hepatocytes. We concluded that LO attenuation of liver inflammation promoted by an HCD is associated with increased liver n-3 PUFA levels, so modulating FA composition, deposition, and distribution in periportal and perivenous hepatocytes.


Assuntos
Ácidos Graxos Ômega-3 , Hepatite , Animais , Camundongos , Ácidos Graxos/metabolismo , Óleo de Semente do Linho/metabolismo , Ácidos Graxos Ômega-6 , Dieta , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hepatócitos/metabolismo , Carboidratos
2.
Nutrients ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260679

RESUMO

A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil (S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1 expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes F4/80, TNF-α, IL-1ß, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced by a HCD.


Assuntos
Fígado Gorduroso/induzido quimicamente , Inflamação/induzido quimicamente , Fígado/metabolismo , Óleo de Brassica napus/farmacologia , Óleo de Soja/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/química , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Óleo de Brassica napus/química , Óleo de Soja/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-31593521

RESUMO

Coconut oil has properties that are beneficial to human health. It assists in reducing total cholesterol, triacylglycerol (TAG), phospholipids, low-density lipoprotein (LDL) cholesterol, and very low-density lipoprotein (VLDL) cholesterol in serum and tissues. So its production, and consequently consumption, have increased in recent years. However, it has been a target for intentional adulteration with lower priced oils and fats, such as soybean oil and palm kernel oil (PKO). Coconut oil (CO) and PKO have similar chemical and physical characteristics that make it difficult to verify adulteration of CO with PKO. This study demonstrates a simple, sensitive, and fast technique that uses direct infusion electrospray ionisation mass spectrometry (ESI-MS) in conjunction with principal component analysis (PCA), in order to detect CO adulterated with PKO. Among the seven commercial coconut oil samples analysed, three were adulterated with PKO. Therefore, the suggested direct infusion ESI-MS method can be used in routine analysis to guarantee the quality of coconut oil.


Assuntos
Óleo de Coco/química , Óleos de Plantas/análise , Óleo de Coco/análise , Óleo de Palmeira , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA