Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L352-63, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233997

RESUMO

Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/fisiologia , Hipertensão Pulmonar/metabolismo , Animais , Antígenos CD/genética , Apoptose , Caderinas/genética , Transdiferenciação Celular , Células Cultivadas , Regulação para Baixo , Endotelina-1/fisiologia , Endotélio Vascular/patologia , Ativação Enzimática , Inativação Gênica , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Pulmão/patologia , Monocrotalina , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Wistar , Transcrição Gênica
2.
Respir Res ; 16: 24, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25848815

RESUMO

BACKGROUND: Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. METHODS: Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. RESULTS: Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. CONCLUSION: High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/efeitos dos fármacos , Sinvastatina/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Elasticidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Mediadores da Inflamação/sangue , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Complacência Pulmonar/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pneumonia/enzimologia , Pneumonia/patologia , Pneumonia/fisiopatologia , Pneumonia/prevenção & controle , Edema Pulmonar/enzimologia , Edema Pulmonar/patologia , Edema Pulmonar/fisiopatologia , Edema Pulmonar/prevenção & controle , Fatores de Tempo , Lesão Pulmonar Induzida por Ventilação Mecânica/enzimologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA