Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(8): 2038-2050, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075235

RESUMO

Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.


Assuntos
COVID-19 , Quirópteros , Imunidade Inata , SARS-CoV-2 , Replicação Viral , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Quirópteros/virologia , Quirópteros/imunologia , COVID-19/transmissão , COVID-19/virologia , COVID-19/imunologia , Camundongos , Cricetinae , Evasão da Resposta Imune , Células Epiteliais/virologia , Células Epiteliais/imunologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/imunologia , Coronavirus/genética , Coronavirus/classificação , Coronavirus/fisiologia , Coronavirus/patogenicidade , Linhagem Celular , Feminino
2.
Nat Commun ; 13(1): 1638, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347138

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
3.
J Clin Invest ; 129(11): 4786-4796, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31408439

RESUMO

A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly-neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identification of these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute infection plasma of forty-four humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody (bNAb) combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have potential to inform new strategies for vaccine development by identifying bNAb combinations in plasma associated with natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Vacinas contra Hepatite Viral/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Vacinas contra Hepatite Viral/administração & dosagem
4.
PLoS Pathog ; 13(2): e1006235, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28235087

RESUMO

Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 µg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Evasão da Resposta Imune/imunologia , Polimorfismo Genético , Receptores Depuradores Classe B/metabolismo , Algoritmos , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepatite C/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese Sítio-Dirigida , Testes de Neutralização , Filogenia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA