Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(10): 3924-3933, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35702321

RESUMO

RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins. Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine, offering the opportunity to inhibit these enzymes with electrophilic small molecules. Here we describe the successful application of quantitative irreversible tethering (qIT) to identify acrylamide fragments that target the active site cysteine of the 3C protease (3Cpro) of Enterovirus 71, the causative agent of hand, foot and mouth disease in humans, altering the substrate binding region. Further, we re-purpose these hits towards the main protease (Mpro) of SARS-CoV-2 which shares the 3C-like fold and a similar active site. The hit fragments covalently link to the catalytic cysteine of Mpro to inhibit its activity. We demonstrate that targeting the active site cysteine of Mpro can have profound allosteric effects, distorting secondary structures to disrupt the active dimeric unit.

2.
RSC Med Chem ; 13(2): 150-155, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35308027

RESUMO

Rab27A is a small GTPase, which mediates transport and docking of secretory vesicles at the plasma membrane via protein-protein interactions (PPIs) with effector proteins. Rab27A promotes the growth and invasion of multiple cancer types such as breast, lung and pancreatic, by enhancing secretion of chemokines, metalloproteases and exosomes. The significant role of Rab27A in multiple cancer types and the minor role in adults suggest that Rab27A may be a suitable target to disrupt cancer metastasis. Similar to many GTPases, the flat topology of the Rab27A-effector PPI interface and the high affinity for GTP make it a challenging target for inhibition by small molecules. Reported co-crystal structures show that several effectors of Rab27A interact with the Rab27A SF4 pocket ('WF-binding pocket') via a conserved tryptophan-phenylalanine (WF) dipeptide motif. To obtain structural insight into the ligandability of this pocket, a novel construct was designed fusing Rab27A to part of an effector protein (fRab27A), allowing crystallisation of Rab27A in high throughput. The paradigm of KRas covalent inhibitor development highlights the challenge presented by GTPase proteins as targets. However, taking advantage of two cysteine residues, C123 and C188, that flank the WF pocket and are unique to Rab27A and Rab27B among the >60 Rab family proteins, we used the quantitative Irreversible Tethering (qIT) assay to identify the first covalent ligands for native Rab27A. The binding modes of two hits were elucidated by co-crystallisation with fRab27A, exemplifying a platform for identifying suitable lead fragments for future development of competitive inhibitors of the Rab27A-effector interaction interface, corroborating the use of covalent libraries to tackle challenging targets.

3.
Nat Commun ; 12(1): 162, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420085

RESUMO

Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability in live cells. Reduction of FancJ and RTEL1 expression in mammalian cells increases the DAOTA-M2 lifetime and therefore suggests an increased number of G4s in these cells, implying that FancJ and RTEL1 play a role in resolving G4 structures in cellulo.


Assuntos
DNA/metabolismo , Quadruplex G , Microscopia Intravital/métodos , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos , Corantes Fluorescentes/química , Técnicas de Silenciamento de Genes , Humanos , Indóis/química , Camundongos , Microscopia de Fluorescência/métodos , RNA Helicases/genética , RNA Helicases/metabolismo
4.
Chembiochem ; 21(23): 3417-3422, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659037

RESUMO

Chemical probes that covalently modify cysteine residues in a protein-specific manner are valuable tools for biological investigations. Covalent fragments are increasingly implemented as probe starting points, but the complex relationship between fragment structure and binding kinetics makes covalent fragment optimization uniquely challenging. We describe a new technique in covalent probe discovery that enables data-driven optimization of covalent fragment potency and selectivity. This platform extends beyond the existing repertoire of methods for identifying covalent fragment hits by facilitating rapid multiparameter kinetic analysis of covalent structure-activity relationships through the simultaneous determination of Ki , kinact and intrinsic reactivity. By applying this approach to develop novel probes against electrophile-sensitive kinases, we showcase the utility of the platform in hit identification and highlight how multiparameter kinetic analysis enabled a successful fragment-merging strategy.


Assuntos
Acrilamida/farmacologia , Cisteína/farmacologia , Corantes Fluorescentes/farmacologia , Fosfotransferases/antagonistas & inibidores , Acrilamida/química , Cristalografia por Raios X , Cisteína/química , Corantes Fluorescentes/química , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Fosfotransferases/metabolismo , Relação Estrutura-Atividade , Termodinâmica
5.
Bio Protoc ; 10(24): e3855, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659502

RESUMO

Small molecules that react to form covalent bonds with proteins are widely used as biological tools and therapeutic agents. Screening cysteine-reactive fragments against a protein target is an efficient way to identify chemical starting points for covalent probe development. Mass spectrometry is often used to identify the site and degree of covalent fragment binding. However, robust hit identification requires characterization of the kinetics of covalent binding that can be readily achieved using quantitative irreversible tethering. This screening platform uses a non-specific cysteine-reactive fluorogenic probe to monitor the rate of reaction between covalent fragments and cysteine containing biomolecules. Fragment libraries are simultaneously screened against the target protein and glutathione, which functions as a control, to identify hit fragments with kinetic selectivity for covalent modification of the target. Screening by quantitative irreversible tethering accounts for variations in the intrinsic reactivity of individual fragments enabling robust hit identification and ranking.

6.
Chemistry ; 25(41): 9691-9700, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31087710

RESUMO

Guanine-rich sequences of DNA are known to readily fold into tetra-stranded helical structures known as G-quadruplexes (G4). Due to their biological relevance, G4s are potential anticancer drug targets and therefore there is significant interest in molecules with high affinity for these structures. Most G4 binders are polyaromatic planar compounds which π-π stack on the G4's guanine tetrad. However, many of these compounds are not very selective since they can also intercalate into duplex DNA. Herein we report a new class of binder based on an octahedral cobalt(III) complex that binds to G4 via a different mode involving hydrogen bonding, electrostatic interactions and π-π stacking. We show that this new compound binds selectivity to G4 over duplex DNA (particularly to the G-rich sequence of the c-myc promoter). This new octahedral complex also has the ability to template the formation of G4 DNA from the unfolded sequence. Finally, we show that upon binding to G4, the complex prevents helicase Pif1-p from unfolding the c-myc G4 structure.


Assuntos
Cobalto/química , Cobalto/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , Quadruplex G/efeitos dos fármacos , Animais , Bovinos , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Genes myc/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos
7.
Angew Chem Int Ed Engl ; 57(19): 5257-5261, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29480525

RESUMO

Cysteine-reactive small molecules are used as chemical probes of biological systems and as medicines. Identifying high-quality covalent ligands requires comprehensive kinetic analysis to distinguish selective binders from pan-reactive compounds. Quantitative irreversible tethering (qIT), a general method for screening cysteine-reactive small molecules based upon the maximization of kinetic selectivity, is described. This method was applied prospectively to discover covalent fragments that target the clinically important cell cycle regulator Cdk2. Crystal structures of the inhibitor complexes validate the approach and guide further optimization. The power of this technique is highlighted by the identification of a Cdk2-selective allosteric (type IV) kinase inhibitor whose novel mode-of-action could be exploited therapeutically.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Cisteína/farmacologia , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Cisteína/química , Cinética , Estrutura Molecular , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/síntese química , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/síntese química
8.
ACS Chem Biol ; 11(8): 2165-76, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27267252

RESUMO

N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents.


Assuntos
Aciltransferases/antagonistas & inibidores , Apoptose , Pontos de Checagem do Ciclo Celular , Estresse do Retículo Endoplasmático , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Proteoma
9.
Trends Parasitol ; 31(7): 306-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951781

RESUMO

The genus Theileria includes tick-transmitted apicomplexan parasites of ruminants with substantial economic impact in endemic countries. Some species, including Theileria parva and Theileria annulata, infect leukocytes where they induce phenotypes that are shared with some cancers, most notably immortalization, hyperproliferation, and dissemination. Despite considerable research into the affected host signaling pathways, the parasite proteins directly responsible for these host phenotypes remain unknown. In this review we outline current knowledge on the manipulation of host cells by transformation-inducing Theileria, and we propose that comparisons between cancer biology and host-Theileria interactions can reveal chemotherapeutic targets against Theileria-induced pathogenesis based on cancer treatment approaches.


Assuntos
Leucócitos/parasitologia , Theileriose/fisiopatologia , Animais , Bovinos , Leucócitos/patologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Theileria/fisiologia , Theileriose/terapia
10.
Chemistry ; 21(13): 4988-99, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25676877

RESUMO

Clickable co-substrate: A tri-functional 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) derivative containing a clickable site was synthesized. This compound is an effective co-substrate in kinase-catalyzed phosphorylation reactions, which can be detected by both electrochemical and immunoassay detection methods. The clickable reaction site makes direct modification possible, which greatly expands its application.

11.
Dalton Trans ; 44(8): 3686-700, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25361228

RESUMO

A series of mono- and bi-metallic metal complexes (with Cu(II), Pt(II) and Zn(II)) with substituted polypyridyl ligands have been prepared and their binding affinities towards quadruplex (c-Myc and human telomeric) and duplex DNA (ds26 and calf thymus) determined using fluorescent indicator displacement (FID) assays and UV/vis spectroscopic titrations. These studies have shown that the number of aromatic rings and number/position of cyclic amine substituents on the ligands, play an important role in defining the DNA binding abilities of the resulting metal complexes. We also show that bi-metallic complexes prepared using a novel terpyridine-cyclen ligand have higher affinity towards G-quadruplex DNA as compared to their mono-metallic counterparts. Cytotoxicity assays were carried out for all the new complexes against an osteosarcoma cancer cell line (U2OS) as well as a normal fibroblast cell line (GM05757). Several of these compounds displayed cytotoxicity similar to that of cisplatin.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Quadruplex G , Platina/química , Zinco/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Ciclamos , Citotoxinas/toxicidade , Compostos Heterocíclicos/química , Humanos , Ligantes , Conformação Molecular , Piridinas/química
12.
Metallomics ; 5(5): 514-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487034

RESUMO

Cisplatin and some of its derivatives have been shown to be very successful anticancer agents. Their main mode of action has been proposed to be via covalent binding to DNA. However, one of the limitations of these drugs is their poor activity against some tumours due to intrinsic or acquired resistance. Therefore, there is interest in developing complexes with different binding modes and mode of action. Herein we present a novel platinum(ii)-terpyridine complex (1) which interacts non-covalently with DNA and induces cell death via a different mechanism than cisplatin. The interaction of this complex with DNA was studied by UV/Vis spectroscopic titrations, fluorescent indicator displacement (FID) assays and circular dichroism (CD) titrations. In addition, computational docking studies were carried out with the aim of establishing the complex's binding mode. These experimental and computational studies showed the complex to have an affinity constant for DNA of ∼10(4) M(-1), a theoretical free energy of binding of -10.83 kcal mol(-1) and selectivity for the minor groove of DNA. Long-term studies indicated that 1 did not covalently bind (or nick) DNA. The cancer cell antiproliferative properties of this platinum(ii) complex were probed in vitro against human and murine cell lines. Encouragingly the platinum(ii) complex displayed selective toxicity for the cancerous (U2OS and SH-SY5Y) and proliferating NIH 3T3 cell lines. Further cell based studies were carried out to establish the mode of action. Cellular uptake studies demonstrated that the complex is able to penetrate the cell membrane and localize to the nucleus, implying that genomic DNA could be a cellular target. Detailed immunoblotting studies in combination with DNA-flow cytometry showed that the platinum(ii) complex induced cell death in a manner consistent with necrosis.


Assuntos
Cisplatino/farmacologia , DNA/metabolismo , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacologia , Platina/metabolismo , Platina/farmacologia , Animais , Bovinos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Precipitação Química , Cisplatino/química , Humanos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Compostos Organoplatínicos/química , Fagocitose/efeitos dos fármacos , Platina/química
13.
Chemistry ; 18(47): 15133-41, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23059789

RESUMO

A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4) M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage.


Assuntos
Antineoplásicos/farmacologia , Cobre/química , DNA/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , DNA/química , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade
14.
ChemMedChem ; 7(12): 2082-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033251

RESUMO

Birds of a tether: A tethering strategy for the site-directed discovery of low-molecular-weight fragments that bind weakly to defined protein surfaces is described. A solvent-exposed protein thiol captures acrylamide-modified fragments in a conjugate addition reaction that requires a template to produce a measureable quantity of protein-fragment adduct, which can be rapidly identified by mass spectrometry.


Assuntos
Acrilamidas/metabolismo , Descoberta de Drogas/métodos , Compostos de Sulfidrila/metabolismo , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/metabolismo , Acrilamidas/química , Sítios de Ligação , Glutationa/química , Glutationa/metabolismo , Cinética , Ligantes , Espectrometria de Massas , Compostos de Sulfidrila/química , Timidilato Sintase/química
15.
Exp Dermatol ; 21 Suppl 1: 1-4, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22626462

RESUMO

Over the last few decades, it has become apparent that oncogenic proliferative signals are coupled to a variety of growth inhibitory responses, such as the induction of apoptotic cell death or irreversible cell cycle arrest known as 'cellular senescence'. Thus, both apoptosis and cellular senescence are thought to act as important tumor suppression mechanisms. Unlike apoptotic cells, however, senescent cells remain viable for long periods of time and accumulate with increasing age in various organs and tissues. Moreover, recent studies reveal that although cellular senescence initially functions as a tumor suppressive process, it may eventually exhibit tumor-promoting effects. Therefore, it is conceivable that accumulation of senescent cells during the ageing process in vivo may contribute to the age-related increase in cancer incidence. In this review, we provide an update and perspective on recent advances made in understanding the deleterious side effects of cellular senescence.


Assuntos
Senescência Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias/prevenção & controle , Neoplasias/terapia , Animais , Apoptose , Proliferação de Células , Transformação Celular Neoplásica , Dano ao DNA , Epigênese Genética , Genes Supressores de Tumor , Humanos , Inflamação , Modelos Biológicos , Neoplasias/metabolismo , Estresse Oxidativo
17.
Chembiochem ; 12(4): 633-40, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21305681

RESUMO

The elucidation of signalling pathways relies heavily upon the identification of protein kinase substrates. Recent investigations have demonstrated the efficacy of chemical genetics using ATP analogues and modified protein kinases for specific substrate labelling. Here we combine N(6) -(cyclohexyl)ATPγS with an analogue-sensitive cdk2 variant to thiophosphorylate its substrates and demonstrate a pH-dependent, chemoselective, one-step alkylation to facilitate the detection or isolation of thiophosphorylated peptides.


Assuntos
Cloretos/química , Quinase 2 Dependente de Ciclina/química , Cisteína/química , Peptídeos/química , Compostos de Fósforo/química , Alquilação , Quinase 2 Dependente de Ciclina/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Peptídeos/genética , Transdução de Sinais , Especificidade por Substrato
18.
Cancer Res ; 71(3): 914-24, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21169411

RESUMO

Progression of prostate cancer is highly dependent upon the androgen receptor pathway, such that knowledge of androgen-regulated proteins is vital to understand and combat this disease. Using a proteomic screen, we found the RNA-binding protein FUS/TLS (Fused in Ewing's Sarcoma/Translocated in Liposarcoma) to be downregulated in response to androgen. FUS has recently been shown to be recruited by noncoding RNAs to the regulatory regions of target genes such as cyclin D1, in which it represses transcription by disrupting complex formation. Here we show that FUS has some characteristics of a putative tumor suppressor, as its overexpression promoted growth inhibition and apoptosis of prostate cancer cells, whereas its knockdown increased cell proliferation. This effect was reproducible in vivo, such that increasing FUS levels in tumor xenografts led to dramatic tumor regression. Furthermore, FUS promoted conditions that favored cell-cycle arrest by reducing the levels of proliferative factors such as cyclin D1 and Cdk6 and by increasing levels of the antiproliferative Cdk inhibitor p27. Immunohistochemical analysis revealed that FUS expression is inversely correlated with Gleason grade, demonstrating that patients with high levels of FUS survived longer and were less likely to have bone metastases, suggesting that loss of FUS expression may contribute to cancer progression. Taken together, our results address the question of how androgens regulate cell-cycle progression, by demonstrating that FUS is a key link between androgen receptor signaling and cell-cycle progression in prostate cancer.


Assuntos
Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína FUS de Ligação a RNA/biossíntese , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Imuno-Histoquímica , Masculino , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias da Próstata/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Receptores Androgênicos/metabolismo
19.
J Chem Biol ; 4(4): 159-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22368708

RESUMO

UNLABELLED: Inhibition of protein kinases in the fight against disease remains a constant challenge for medicinal chemists, who have screened multitudes of predominantly planar organic scaffolds, natural and synthetic, to identify potent-albeit not always selective-kinase inhibitors. Herein, in an effort to investigate the potential biological utility of metal-based compounds as inhibitors against the cancer-relevant targets mitogen-activated protein kinase and cyclin-dependent kinase 2, we explore various parameters in planar platinum(II) complexes with substituted phenanthroline ligands and aliphatic diamine chelate co-ligands, to identify combinations that yield promising inhibitory activity. The individual ligands' steric requirements as well as their pattern of hydrogen bond donors/acceptors appear to alter inhibitory potency when modulated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12154-011-0059-5) contains supplementary material, which is available to authorized users.

20.
J Biol Chem ; 285(46): 35728-39, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20810654

RESUMO

Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occurs in a cyclin-dependent kinase (CDK)·cyclin-dependent manner with CDK1·cyclin B as the major kinase complex, although CDK2 and cyclin A also appear to be important. We have mapped two CDK phosphorylation sites, serines 368 and 423, which play a role in defining FOXK2 function through regulating its stability and its activity as a transcriptional repressor protein. These two CDK sites appear vital for FOXK2 function because expression of a mutant lacking these sites cannot be tolerated and causes apoptosis.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Sequência de Aminoácidos , Apoptose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Fatores de Transcrição Forkhead/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/genética , Serina/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA