Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37754068

RESUMO

Universal platforms to analyze biomolecules using sensor devices can address critical diagnostic challenges. Sensor devices like electrical-based field-effect transistors play an essential role in sensing biomolecules by charge probing. Graphene-based devices are more suitable for these applications. It has been previously reported that Graphene Field-Effect Transistor (GFET) devices detect DNA hybridization, pH sensors, and protein molecules. Graphene became a promising material for electrical-based field-effect transistor devices in sensing biomarkers, including biomolecules and proteins. In the last decade, FET devices have detected biomolecules such as DNA molecules, pH, glucose, and protein. These studies have suggested that the reference electrode is placed externally and measures the transfer characteristics. However, the external probing method damages the samples, requiring safety measurements and a substantial amount of time. To control this problem, the graphene field-effect transistor (GFET) device is fabricated with an inbuilt gate that acts as a reference electrode to measure the biomolecules. Herein, the monolayer graphene is exfoliated, and the GFET is designed with an in-built gate to detect the Interleukin-6 (IL-6) protein. IL-6 is a multifunctional cytokine which plays a significant role in immune regulation and metabolism. Additionally, IL-6 subsidizes a variability of disease states, including many types of cancer development, and metastasis, progression, and increased levels of IL-6 are associated with a higher risk of cancer and can also serve as a prognostic marker for cancer. Here, the protein is desiccated on the GFET device and measured, and Dirac point shifting in the transfer characteristics systematically evaluates the device's performance. Our work yielded a conductive and electrical response with the IL-6 protein. This graphene-based transducer with an inbuilt gate gives a promising platform to enable low-cost, compact, facile, real-time, and sensitive amperometric sensors to detect IL-6. Targeting this pathway may help develop treatments for several other symptoms, such as neuromyelitis optica, uveitis, and, more recently, COVID-19 pneumonia.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Neoplasias , Humanos , Interleucina-6 , Grafite/química , Técnicas Biossensoriais/métodos , Transistores Eletrônicos , DNA
2.
Nature ; 506(7488): 376-81, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24390342

RESUMO

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Descoberta de Drogas , Predisposição Genética para Doença/genética , Terapia de Alvo Molecular , Alelos , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Povo Asiático/genética , Estudos de Casos e Controles , Biologia Computacional , Reposicionamento de Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
3.
Xenobiotica ; 44(3): 197-204, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24156774

RESUMO

1. Aldehyde oxidase (AO) is a liver cytosolic molybdoflavoprotein enzyme whose importance in drug metabolism is gaining in the recent. The objective of this work is to find a potent and selective inhibitor for AO activity using phthalazine oxidation as a marker reaction. 2. Among organic solvents tested, it was identified that methanol was not a suitable choice for AO activity even at concentrations less than 0.2% v/v. Acetonitrile and DMSO did not show any effect till 0.5% v/v but thereafter activites tend to decrease. 3. For selectivity, 23 compounds were selected and evaluated for their effects on AO and nine CYP450 enzymes. Among the tested compounds chlorpromazine, estradiol, hydralazine, quetiapine and raloxifene were selected based on their potency of inhibition towards AO activity. 4. Raloxifene was found to be a non-specific inhibitor of all major tested CYP450 enzymes and was excluded as a selective inhibitor for AO. Quetiapine also showed a degree of inhibition towards the major CYP450 tested. Hydralazine used as a specific inhibitor during the past for AO activity demonstrated a stimulation of AO activity at high and low concentrations respectively and the inhibition noted to be time dependent while inhibiting other enzymes like monoamine oxidase. 5. Estradiol showed no inhibition towards the tested CYP450 enzymes and thus proved to be a selective and specific inhibitor for AO activity with an uncompetitive mode of inhibition.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Inativação Metabólica/fisiologia , Fígado/metabolismo , Solventes/farmacologia , Aldeído Oxidase/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzotiazepinas/farmacologia , Estradiol/farmacologia , Humanos , Fígado/fisiologia , Microssomos Hepáticos/metabolismo , Oxirredução , Ftalazinas/metabolismo , Fumarato de Quetiapina , Cloridrato de Raloxifeno/farmacologia , Espectrometria de Massas em Tandem
4.
Mol Cell Proteomics ; 6(6): 987-99, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16829691

RESUMO

Esophageal adenocarcinoma, currently the seventh leading cause of cancer-related death, has been associated with the presence of Barrett metaplasia. The malignant potential of Barrett metaplasia is evidenced by ultimate progression of this condition to invasive adenocarcinoma. We utilized liquid phase separation of proteins with chromatofocusing in the first dimension and nonporous reverse phase HPLC in the second dimension followed by ESI-TOF mass spectrometry to identify proteins differentially expressed in six Barrett metaplasia samples as compared with six esophageal adenocarcinoma samples; all six Barrett samples were obtained from the identical six patients from whom we obtained the esophageal adenocarcinoma tissue. Approximately 300 protein bands were detected by mass mappings, and 38 differentially expressed proteins were identified by microLC-MS/MS. The false positive rates of the peptide identifications were evaluated by reversed database searching. Among the proteins that were identified, Rho GDP dissociation inhibitor 2, alpha-enolase, Lamin A/C, and nucleoside-diphosphate kinase A were demonstrated to be up-regulated in both mRNA and protein expression in esophageal adenocarcinomas relative to Barrett metaplasia. Candidate proteins were examined at the mRNA level using high density oligonucleotide microarrays. The cellular expression patterns were verified in both esophageal adenocarcinomas and in Barrett metaplasia by immunohistochemistry. These differentially expressed proteins may have utility as useful candidate markers of esophageal adenocarcinoma.


Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Bovinos , Cromatografia Líquida , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peso Molecular , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Sistemas On-Line , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA