Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 209(2): 368-378, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760519

RESUMO

Extraintestinal manifestations are common in inflammatory bowel disease and involve several organs, including the kidney. However, the mechanisms responsible for renal manifestation in inflammatory bowel disease are not known. In this study, we show that the Wnt-lipoprotein receptor-related proteins 5 and 6 (LRP5/6) signaling pathway in macrophages plays a critical role in regulating colitis-associated systemic inflammation and renal injury in a murine dextran sodium sulfate-induced colitis model. Conditional deletion of the Wnt coreceptors LRP5/6 in macrophages in mice results in enhanced susceptibility to dextran sodium sulfate colitis-induced systemic inflammation and acute kidney injury (AKI). Furthermore, our studies show that aggravated colitis-associated systemic inflammation and AKI observed in LRP5/6LysM mice are due to increased bacterial translocation to extraintestinal sites and microbiota-dependent increased proinflammatory cytokine levels in the kidney. Conversely, depletion of the gut microbiota mitigated colitis-associated systemic inflammation and AKI in LRP5/6LysM mice. Mechanistically, LRP5/6-deficient macrophages were hyperresponsive to TLR ligands and produced higher levels of proinflammatory cytokines, which are associated with increased activation of MAPKs. These results reveal how the Wnt-LRP5/6 signaling in macrophages controls colitis-induced systemic inflammation and AKI.


Assuntos
Injúria Renal Aguda , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Injúria Renal Aguda/metabolismo , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Rim/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/genética
2.
Front Immunol ; 12: 691134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394085

RESUMO

For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells' effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.


Assuntos
Células Dendríticas/imunologia , Ácido Láctico/imunologia , Macrófagos/imunologia , Animais , Autoimunidade , Proteínas de Ciclo Celular/imunologia , Humanos , Imunomodulação , Infecções/imunologia , Doenças Inflamatórias Intestinais/imunologia , Transportadores de Ácidos Monocarboxílicos/imunologia , Neoplasias/imunologia , Receptores Acoplados a Proteínas G/imunologia
3.
J Immunol ; 205(8): 2265-2275, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32917787

RESUMO

Loss of immune tolerance to gut microflora is inextricably linked to chronic intestinal inflammation and colitis-associated colorectal cancer (CAC). The LRP5/6 signaling cascade in APCs contributes to immune homeostasis in the gut, but whether this pathway in APCs protects against CAC is not known. In the current study, using a mouse model of CAC, we show that the LRP5/6-ß-catenin-IL-10 signaling axis in intestinal CD11c+ APCs protects mice from CAC by regulating the expression of tumor-promoting inflammatory factors in response to commensal flora. Genetic deletion of LRP5/6 in CD11c+ APCs in mice (LRP5/6ΔCD11c) resulted in enhanced susceptibility to CAC. This is due to a microbiota-dependent increased expression of proinflammatory factors and decreased expression of the immunosuppressive cytokine IL-10. This condition could be improved in LRP5/6ΔCD11c mice by depleting the gut flora, indicating the importance of LRP5/6 in mediating immune tolerance to the gut flora. Moreover, mechanistic studies show that LRP5/6 suppresses the expression of tumor-promoting inflammatory factors in CD11c+ APCs via the ß-catenin-IL-10 axis. Accordingly, conditional activation of ß-catenin specifically in CD11c+ APCs or in vivo administration of IL-10 protected LRP5/6ΔCD11c mice from CAC by suppressing the expression of inflammatory factors. In summary, in this study, we identify a key role for the LRP5/6-ß-catenin-IL-10 signaling pathway in intestinal APCs in resolving chronic intestinal inflammation and protecting against CAC in response to the commensal flora.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Colite/imunologia , Neoplasias do Colo/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-10/imunologia , Via de Sinalização Wnt/imunologia , beta Catenina/imunologia , Animais , Células Apresentadoras de Antígenos/patologia , Colite/complicações , Colite/genética , Colite/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/genética , Neoplasias do Colo/prevenção & controle , Microbioma Gastrointestinal/genética , Interleucina-10/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
4.
Oncoimmunology ; 5(4): e1115941, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27141399

RESUMO

The tumor microenvironment (TME) contains high levels of the Wnt family of ligands, and aberrant Wnt-signaling occurs in many tumors. Past studies have been directed toward how the Wnt signaling cascade regulates cancer development, progression and metastasis. However, its effects on host antitumor immunity remain unknown. In this report, we show that Wnts in the TME condition dendritic cells (DCs) to a regulatory state and suppress host antitumor immunity. DC-specific deletion of Wnt co-receptors low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) in mice markedly delayed tumor growth and enhanced host antitumor immunity. Mechanistically, loss of LRP5/6-mediated signaling in DCs resulted in enhanced effector T cell differentiation and decreased regulatory T cell differentiation. This was due to increased production of pro-inflammatory cytokines and decreased production of IL-10, TGF-ß1 and retinoic acid (RA). Likewise, pharmacological inhibition of the Wnts' interaction with its cognate co-receptors LRP5/6 and Frizzled (Fzd) receptors had similar effects on tumor growth and effector T cell responses. Moreover, blocking Wnt-signaling in DCs resulted in enhanced capture of tumor-associated antigens and efficient cross-priming of CD8+ T cells. Hence, blocking the Wnt pathway represents a potential therapeutic to overcome tumor-mediated immune suppression and augment antitumor immunity.

5.
Cancer Res ; 75(4): 656-665, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25568183

RESUMO

Tumors actively suppress antitumor immunity, creating formidable barriers to successful cancer immunotherapy. The molecular mechanisms underlying tumor-induced immune tolerance are largely unknown. In the present study, we show that dendritic cells (DC) in the tumor microenvironment acquire the ability to metabolize vitamin A to produce retinoic acid (RA), which drives regulatory T-cell responses and immune tolerance. Tolerogenic responses were dependent on induction of vitamin A-metabolizing enzymes via the ß-catenin/T-cell factor (TCF) pathway in DCs. Consistent with this observation, DC-specific deletion of ß-catenin in mice markedly reduced regulatory T-cell responses and delayed melanoma growth. Pharmacologic inhibition of either vitamin A-metabolizing enzymes or the ß-catenin/TCF4 pathway in vivo had similar effects on tumor growth and regulatory T-cell responses. Hence, ß-catenin/TCF4 signaling induces local regulatory DC and regulatory T-cell phenotypes via the RA pathway, identifying this pathway as an important target for anticancer immunotherapy.


Assuntos
Células Dendríticas/metabolismo , Microambiente Tumoral/imunologia , Vitamina A/metabolismo , beta Catenina/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição 4 , Microambiente Tumoral/genética , beta Catenina/metabolismo
6.
J Immunol ; 193(8): 4203-13, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25210120

RESUMO

Dendritic cells (DCs) sense microbes via multiple innate receptors. Signals from different innate receptors are coordinated and integrated by DCs to generate specific innate and adaptive immune responses against pathogens. Previously, we have shown that two pathogen recognition receptors, TLR2 and dectin-1, which recognize the same microbial stimulus (zymosan) on DCs, induce mutually antagonistic regulatory or inflammatory responses, respectively. How diametric signals from these two receptors are coordinated in DCs to regulate or incite immunity is not known. In this study, we show that TLR2 signaling via AKT activates the ß-catenin/T cell factor 4 pathway in DCs and programs them to drive T regulatory cell differentiation. Activation of ß-catenin/T cell factor 4 was critical to induce regulatory molecules IL-10 (Il-10) and vitamin A metabolizing enzyme retinaldehyde dehydrogenase 2 (Aldh1a2) and to suppress proinflammatory cytokines. Deletion of ß-catenin in DCs programmed them to drive Th17/Th1 cell differentiation in response to zymosan. Consistent with these findings, activation of the ß-catenin pathway in DCs suppressed chronic inflammation and protected mice from Th17/Th1-mediated autoimmune neuroinflammation. Thus, activation of ß-catenin in DCs via the TLR2 receptor is a novel mechanism in DCs that regulates autoimmune inflammation.


Assuntos
Autoimunidade/imunologia , Células Dendríticas/imunologia , Linfócitos T Reguladores/citologia , Receptor 2 Toll-Like/imunologia , beta Catenina/metabolismo , Transferência Adotiva , Aldeído Desidrogenase/biossíntese , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Inflamação/prevenção & controle , Interleucina-10/biossíntese , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/imunologia , Retinal Desidrogenase , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/imunologia , Zimosan/imunologia , Zimosan/farmacologia , beta Catenina/genética
7.
Clin Chim Acta ; 378(1-2): 128-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17182021

RESUMO

BACKGROUND: Butyrylcholinesterase (BChE; gi:116353) deficiency has adverse effects on the response to succinylcholine and mivacurium. A physiological function of BChE is to inactivate octanoyl ghrelin. We determined the health effect of complete absence of BChE in humans. METHODS: Clinical tests of cardiac, lung, liver, and kidney function, body weight, sperm counts and motility were performed on 5 men, age 20-32 y, in the Vysya community of Coimbatore, India who had silent BChE. Postmortem tissues from 2 cadavers with wild-type BChE were assayed. RESULTS: Test results were normal, except for lung function, which indicated mild obstruction in silent as well as in wild-type BChE subjects. Creatine kinase-MB levels were high in 2 subjects, but there were no other indications of damage to the heart. Body weight was normal. Family histories revealed no trend in disease susceptibility. The human body contains 10 times more BChE than acetylcholinesterase molecules. CONCLUSION: Individuals completely deficient in BChE have only minor abnormalities in clinical test results. However, they respond abnormally to standard doses of succinylcholine and mivacurium. It is expected, but not proven, that they are unusually susceptible to the toxicity of cocaine and organophosphorus pesticides, and resistant to bambuterol and irinotecan. Their normal body weight suggests alternative routes for deactivation of octanoyl ghrelin.


Assuntos
Butirilcolinesterase/deficiência , Adulto , Peso Corporal , Butirilcolinesterase/fisiologia , Cocaína/toxicidade , Eletrocardiografia , Feminino , Grelina , Humanos , Rim/fisiopatologia , Fígado/fisiopatologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Hormônios Peptídicos/metabolismo , Motilidade dos Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA