Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 345(6199): 950-3, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146293

RESUMO

Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Assuntos
Brassica napus/genética , Duplicação Cromossômica , Evolução Molecular , Genoma de Planta , Poliploidia , Sementes/genética , Brassica napus/citologia
2.
Genome Biol ; 15(6): R77, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916971

RESUMO

BACKGROUND: Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. RESULTS: We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. CONCLUSIONS: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.


Assuntos
Brassica/genética , Genoma de Planta , Transcriptoma , Aneuploidia , Brassica/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Epigênese Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA
3.
Plant Biotechnol J ; 11(5): 564-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23346876

RESUMO

Despite the international significance of wheat, its large and complex genome hinders genome sequencing efforts. To assess the impact of selection on this genome, we have assembled genomic regions representing genes for chromosomes 7A, 7B and 7D. We demonstrate that the dispersion of wheat to new environments has shaped the modern wheat genome. Most genes are conserved between the three homoeologous chromosomes. We found differential gene loss that supports current theories on the evolution of wheat, with greater loss observed in the A and B genomes compared with the D. Analysis of intervarietal polymorphisms identified fewer polymorphisms in the D genome, supporting the hypothesis of early gene flow between the tetraploid and hexaploid. The enrichment for genes on the D genome that confer environmental adaptation may be associated with dispersion following wheat domestication. Our results demonstrate the value of applying next-generation sequencing technologies to assemble gene-rich regions of complex genomes and investigate polyploid genome evolution. We anticipate the genome-wide application of this reduced-complexity syntenic assembly approach will accelerate crop improvement efforts not only in wheat, but also in other polyploid crops of significance.


Assuntos
Pão , Produtos Agrícolas/genética , Genoma de Planta/genética , Dispersão de Sementes/genética , Triticum/genética , Austrália , Ontologia Genética , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Sintenia/genética
4.
Plant Biotechnol J ; 10(6): 743-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22748104

RESUMO

Single nucleotide polymorphisms (SNPs) are the most abundant type of molecular genetic marker and can be used for producing high-resolution genetic maps, marker-trait association studies and marker-assisted breeding. Large polyploid genomes such as wheat present a challenge for SNP discovery because of the potential presence of multiple homoeologs for each gene. AutoSNPdb has been successfully applied to identify SNPs from Sanger sequence data for several species, including barley, rice and Brassica, but the volume of data required to accurately call SNPs in the complex genome of wheat has prevented its application to this important crop. DNA sequencing technology has been revolutionized by the introduction of next-generation sequencing, and it is now possible to generate several million sequence reads in a timely and cost-effective manner. We have produced wheat transcriptome sequence data using 454 sequencing technology and applied this for SNP discovery using a modified autoSNPdb method, which integrates SNP and gene annotation information with a graphical viewer. A total of 4,694,141 sequence reads from three bread wheat varieties were assembled to identify a total of 38 928 candidate SNPs. Each SNP is within an assembly complete with annotation, enabling the selection of polymorphism within genes of interest.


Assuntos
Polimorfismo de Nucleotídeo Único , Triticum/genética , Anotação de Sequência Molecular , Mutação Puntual , Análise de Sequência de DNA , Especificidade da Espécie
5.
Plant Biotechnol J ; 10(6): 750-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22765874

RESUMO

The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant-microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.


Assuntos
Brassicaceae/genética , Análise de Sequência de DNA , Brassica rapa/genética , Fabaceae/genética , Perfilação da Expressão Gênica , Genes de Plantas , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
6.
Biology (Basel) ; 1(2): 370-82, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24832230

RESUMO

Single nucleotide polymorphisms (SNPs) are becoming the dominant form of molecular marker for genetic and genomic analysis. The advances in second generation DNA sequencing provide opportunities to identify very large numbers of SNPs in a range of species. However, SNP identification remains a challenge for large and polyploid genomes due to their size and complexity. We have developed a pipeline for the robust identification of SNPs in large and complex genomes using Illumina second generation DNA sequence data and demonstrated this by the discovery of SNPs in the hexaploid wheat genome. We have developed a SNP discovery pipeline called SGSautoSNP (Second-Generation Sequencing AutoSNP) and applied this to discover more than 800,000 SNPs between four hexaploid wheat cultivars across chromosomes 7A, 7B and 7D. All SNPs are presented for download and viewing within a public GBrowse database. Validation suggests an accuracy of greater than 93% of SNPs represent polymorphisms between wheat cultivars and hence are valuable for detailed diversity analysis, marker assisted selection and genotyping by sequencing. The pipeline produces output in GFF3, VCF, Flapjack or Illumina Infinium design format for further genotyping diverse populations. As well as providing an unprecedented resource for wheat diversity analysis, the method establishes a foundation for high resolution SNP discovery in other large and complex genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA