Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 15(6): 102361, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880004

RESUMO

The genus Amblyomma contains the highest percentage of reptile-associated ticks, and comprises approximately nine subgenera. One of these subgenera is Adenopleura, which also encompasses Amblyomma javanense, and its type species Amblyomma compressum. This study describes a new Amblyomma species associated with Bengal monitor lizards (Varanus bengalensis) based on morphology and its mitogenome in Khyber Pakhtunkhwa, Pakistan. Reptiles belonging to different genera were examined for Amblyomma ticks and only the monitor lizard was infested with ticks in the District Bajaur. Collected Amblyomma cf. javanense ticks were analyzed and formally described as a new species. Overall, 57 A. cf. javanense ticks were collected on monitor lizards (4/27) with a 15% prevalence of infestation, 2.1 mean abundance, and 14.3 mean intensity. Ticks comprised males (n = 23, 40%), females (n = 14, 25%) and nymphs (n = 20, 35%), while no larvae were found. BLAST analysis of A. cf. javanense sequences showed the following maximum identities; 98.25% with undetermined Amblyomma species based on 12S rRNA, 96.07% with A. javanense based on 16S rRNA, 99.56% and 90.95% with an Amblyomma sp. and A. javanense, respectively, based on ITS2. Moreover, the mitochondrial genome of A. cf. javanense showed maximum identities of 80.75%, 80.48% and 79.42% with Amblyomma testudinarium, A. javanense, and Amblyomma sp., respectively. The phylogenetic analysis of A. cf. javanense revealed that its 12S rRNA and 16S rRNA are closely related to an Amblyomma sp. and A. javanense, respectively, from Sri Lanka, its ITS2 is closely related to A. javanense from China and an Amblyomma sp. from Sri Lanka, and its mitogenome is closely related to A. javanense and Amblyomma sp. from China. The pairwise distance analysis resulted in divergence of 0-1.71% (12S rRNA), 0-17.5% (16S rRNA), 0-9.1% (ITS2) and 0-20.5% (mitochondrial genome). We also contributed the full-length mitochondrial genome sequence of A. compressum and showed that this species does not share a most recent common ancestor with A. javanense. As the subgenus Adenopleura is paraphyletic, this study could help to understand the systematics and phylogeny of this taxon.

2.
Parasit Vectors ; 17(1): 139, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500136

RESUMO

BACKGROUND: Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking. METHODS: We used genomic techniques to sequence complete and nearly complete mitochondrial genomes -ca. 15 kbp- as well as the nuclear ribosomal cluster -ca. 8 kbp- for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks-as outgroup-) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates. RESULTS: In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic. CONCLUSIONS: We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.


Assuntos
Genoma Mitocondrial , Ixodidae , Carrapatos , Animais , Ixodidae/genética , Filogenia , Amblyomma
3.
Ticks Tick Borne Dis ; 14(6): 102209, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37327738

RESUMO

Tick saliva helps blood feeding by its antihemostatic and immunomodulatory activities. Tick salivary gland transcriptomes (sialotranscriptomes) revealed thousands of transcripts coding for putative secreted polypeptides. Hundreds of these transcripts code for groups of similar proteins, constituting protein families, such as the lipocalins and metalloproteases. However, while many of these transcriptome-derived protein sequences matches sequences predicted by tick genome assemblies, the majority are not represented in these proteomes. The diversity of these transcriptome-derived transcripts could derive from artifacts generated during assembly of short Illumina reads or derive from polymorphisms of the genes coding for these proteins. To investigate this discrepancy, we collected salivary glands from blood-feeding ticks and, from the same homogenate, made and sequenced libraries following Illumina and PacBio protocols, with the assumption that the longer PacBio reads would reveal the sequences generated by the assembly of Illumina reads. Using both Rhipicephalus zambeziensis and Ixodes scapularis ticks, we have obtained more lipocalin transcripts from the Illumina library than the PacBio library. To verify whether these unique Illumina transcripts were real, we selected 9 uniquely Illumina-derived lipocalin transcripts from I. scapularis and attempted to obtain PCR products. These were obtained and their sequences confirmed the presence of these transcripts in the I. scapularis salivary homogenate. We further compared the predicted salivary lipocalins and metalloproteases from I. scapularis sialotranscriptomes with those found in the predicted proteomes of 3 publicly available genomes of I. scapularis. Results indicate that the discrepancy between the genome and transcriptome sequences for these salivary protein families is due to a high degree of polymorphism within these genes.


Assuntos
Ixodes , Rhipicephalus , Animais , Transcriptoma , Proteoma/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Glândulas Salivares , Rhipicephalus/genética , Ixodes/genética , Proteínas e Peptídeos Salivares/genética
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555254

RESUMO

Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.


Assuntos
Ixodidae , Carrapatos , Animais , Carrapatos/genética , Carrapatos/metabolismo , Saliva/metabolismo , Ixodidae/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Transcriptoma , Proteínas de Artrópodes/metabolismo
5.
Front Physiol ; 12: 725635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421661

RESUMO

Tick salivary glands produce and secrete a variety of compounds that modulate host responses and ensure a successful blood meal. Despite great progress made in the identification of ticks salivary compounds in recent years, there is still a paucity of information concerning salivary molecules of Neotropical argasid ticks. Among this group of ticks, considering the number of human cases of parasitism, including severe syndromes and hospitalization, Ornithodoros brasiliensis can be considered one of the major Neotropical argasid species with impact in public health. Here, we describe the transcriptome analysis of O. brasiliensis salivary glands (ObSG). The transcriptome yielded ~14,957 putative contigs. A total of 368 contigs were attributed to secreted proteins (SP), which represent approximately 2.5% of transcripts but ~53% expression coverage transcripts per million. Lipocalins are the major protein family among the most expressed SP, accounting for ~16% of the secretory transcripts and 51% of secretory protein abundance. The most expressed transcript is an ortholog of TSGP4 (tick salivary gland protein 4), a lipocalin first identified in Ornithodoros kalahariensis that functions as a leukotriene C4 scavenger. A total of 55 lipocalin transcripts were identified in ObSG. Other transcripts potentially involved in tick-host interaction included as: basic/acid tail secretory proteins (second most abundant expressed group), serine protease inhibitors (including Kunitz inhibitors), 5' nucleotidases (tick apyrases), phospholipase A2, 7 disulfide bond domain, cystatins, and tick antimicrobial peptides. Another abundant group of proteins in ObSG is metalloproteases. Analysis of these major protein groups suggests that several duplication events after speciation were responsible for the abundance of redundant compounds in tick salivary glands. A full mitochondrial genome could be assembled from the transcriptome data and confirmed the close genetic identity of the tick strain sampled in the current study, to a tick strain previously implicated in tick toxicoses. This study provides novel information on the molecular composition of ObSG, a Brazilian endemic tick associated with several human cases of parasitism. These results could be helpful in the understanding of clinical findings observed in bitten patients, and also, could provide more information on the evolution of Neotropical argasids.

6.
Mol Phylogenet Evol ; 162: 107178, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33892098

RESUMO

Rhipicephalus are a species-diverse genus of ticks, mainly distributed in the Afrotropics with some species in the Palearctic and Oriental regions. Current taxonomic consensus comprise nine informal species groups/lineages based on immature morphology. This work integrates biogeographic, ecological and molecular lines of evidence to better understand Rhipicephalus evolution. Phylogenetic analysis based on four genes (12S, 16S, 28S-D2 and COI) recovered five distinct clades with nine descendant clades that are generally congruent with current taxonomy, with some exceptions. Historical biogeography is inferred from molecular divergence times, ancestral distribution areas, host-use and climate niches of four phylogenetically significant bioclimatic variables (isothermality, annual, seasonal and diurnal temperature range). Novel hosts enabled host-linked dispersal events into new environments, and ticks exploited new hosts through nested predator-prey connections in food webs. Diversification was further induced by climate niche partitioning along gradients in temperature range during off-host periods. Ancestral climate niche estimates corroborated dispersal events by indicating hypothetical ancestors moved into environments with different annual and seasonal temperature ranges along latitudinal gradients. Host size for immature and adult life stages was important for dispersal and subsequent diversification rates. Clades that utilise large, mobile hosts (ungulates and carnivores) early in development have wider geographic ranges but slower diversification rates, and those utilising small, less mobile hosts (rodents, lagomorphs and afroinsectivores) early in development have smaller ranges but higher diversification rates. These findings suggest diversification is driven by a complex set of factors linked to both host-associations (host size, ranges and mobility) and climate niche partitioning along annual and seasonal temperature range gradients that vary with latitude. Moreover, competitive interactions can reinforce these processes and drive speciation. Off-host periods facilitate adaptive radiation by enabling host switches along nested predator-prey connections in food webs, but at the cost of environmental exposure that partitions niches among dispersing progenitors, disrupting geneflow and driving diversification. As such, the evolution and ecological niches of Rhipicephalus are characterised by trade-offs between on- and off-host periods, and these trade-offs interact with nested predator-prey connections in food webs, host-use at different life stages, as well as gradients in annual and seasonal temperature ranges to drive adaptive radiation and speciation.


Assuntos
Cadeia Alimentar , Especiação Genética , Especificidade de Hospedeiro , Filogenia , Rhipicephalus/classificação , Rhipicephalus/genética , Temperatura , Animais , Ecossistema , Feminino , Masculino
7.
Ticks Tick Borne Dis ; 12(1): 101577, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120251

RESUMO

The evolution and phylogenetic relationships of the ticks at both the family and genus levels are contested. The genus Amblyomma and its subgenera are in a state of flux; moreover, the relationships among the three tick families are controversial due to conflicting phylogenetic support for different arrangements of the three families of living ticks. With 18 newly sequenced mitochondrial (mt) genomes of ticks included, we executed the largest mt genome phylogenetic study of ticks so far. Phylogenetic trees were inferred from one sea spider mt genome, one horseshoe crab, five mite mt genomes and 146 tick mt genomes from 120 species: 153 mt genomes in total. Sixteen phylogenetic trees were inferred from 10 datasets using both maximum likelihood and Bayesian inference methods. We describe the first novel mt gene-arrangement for the metastriate Ixodidae in Amblyomma (Africaniella) transversale. Also, three unusual partial 16S rRNA gene inserts were found in the mt genome of Haemaphysalis (Alloceraea) kitaokai: we consider the possible role of past genome translocation events in the formation of these inserts. Our phylogenies revealed evidence that: (i) the genus Amblyomma is polyphyletic with respect to Amblyomma (Africaniella) transversale; (ii) the subgenus Aponomma is apparently embedded in the genus Amblyomma; (iii) Haemaphysalis (Segalia) parva and Haemaphysalis (Alloceraea) kitaokai form a clade to the exclusion of other Haemaphysalis species; and (iv) the phylogenetic position of the family Nuttalliellidae is unstable among phylogenies from different datasets.


Assuntos
Amblyomma/genética , Argasidae/classificação , Evolução Biológica , Genoma Mitocondrial , Ixodidae/classificação , Filogenia , Animais
8.
Artigo em Inglês | MEDLINE | ID: mdl-32850476

RESUMO

Tick saliva contains a complex mixture of peptides and non-peptides that counteract their hosts' hemostasis, immunity, and tissue-repair reactions. Recent transcriptomic studies have revealed over one thousand different transcripts coding for secreted polypeptides in a single tick species. Not only do these gene products belong to many expanded families, such as the lipocalins, metalloproteases, Antigen-5, cystatins, and apyrases, but also families that are found exclusively in ticks, such as the evasins, Isac, DAP36, and many others. Phylogenetic analysis of the deduced protein sequences indicate that the salivary genes exhibit an increased rate of evolution due to a lower evolutionary constraint and/or positive selection, allowing for a large diversity of tick salivary proteins. Thus, for each new tick species that has its salivary transcriptome sequenced and assembled, a formidable task of annotation of these transcripts awaits. Currently, as of November 2019, there are over 287 thousand coding sequences deposited at the National Center for Biotechnology Information (NCBI) that are derived from tick salivary gland mRNA. Here, from these 287 thousand sequences we identified 45,264 potential secretory proteins which possess a signal peptide and no transmembrane domains on the mature peptide. By using the psiblast tools, position-specific matrices were constructed and assembled into the TickSialoFam (TSF) database. The TSF is a rpsblastable database that can help with the annotation of tick sialotranscriptomes. The TSA database identified 136 tick salivary secreted protein families, as well as 80 families of endosomal-related products, mostly having a protein modification function. As the number of sequences increases, and new annotation details become available, new releases of the TSF database may become available.


Assuntos
Carrapatos , Animais , Filogenia , Glândulas Salivares , Proteínas e Peptídeos Salivares/genética , Carrapatos/genética , Transcriptoma
9.
Chem Commun (Camb) ; 55(10): 1374-1377, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30520894

RESUMO

Selenocysteine scanning (SecScan) is a novel technique to map disulfide networks in proteins independent of structure-based distance information and mass spectrometry. SecScan applies systematic substitution of single Cys by Sec in combination with NMR spectroscopy for reliable and unambiguous determination of disulfide bond networks.


Assuntos
Dissulfetos/química , Peptídeos/química , Proteínas/química , Selenocisteína/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Peptídeos/genética , Peptídeos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
10.
Exp Parasitol ; 122(4): 318-27, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19393241

RESUMO

Salivary apyrases are nucleotide-metabolising enzymes that blood-feeding parasites utilise for modulation of extracellular nucleotides to prevent platelet activation and aggregation. In this study a 5'-nucleotidase specific degenerate primer was used to identify homologous transcripts from Ornithodoros savignyi salivary gland cDNA. Two 5'-nucleotidase isoforms that share significant sequence identity to putative apyrases from Rhipicephalus appendiculatus and Ixodes scapularis were identified. Structure prediction showed a tertiary structure similar to periplasmic ecto-5'-nucleotidase from Escherichia coli, with high conservation of functional residues. The O. savignyi 5'-nucleotidase isoform I was recombinantly expressed in Pichia pastoris. Cross-reactivity was demonstrated with polyclonal anti-apyrase antisera produced against O. savignyi apyrase. Subsequent Edman sequencing and MS/MS analysis of purified O. savignyi apyrase identified peptide sequence fragments that shared sequence identity with both newly identified 5'-nucleotidase isoforms. It was concluded that wild-type apyrase is a mixture of the isoforms identified from the salivary glands of O. savignyi. These results represent the first confirmation of a soft (argasid) tick apyrase that belongs to the 5'-nucleotidase family of enzymes.


Assuntos
5'-Nucleotidase/classificação , Apirase/classificação , Ornithodoros/enzimologia , 5'-Nucleotidase/química , 5'-Nucleotidase/genética , Sequência de Aminoácidos , Animais , Animais Domésticos/parasitologia , Apirase/química , Apirase/genética , Sequência de Bases , Western Blotting , Clonagem Molecular , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Regulação Enzimológica da Expressão Gênica , Isoenzimas/química , Isoenzimas/classificação , Isoenzimas/genética , Dados de Sequência Molecular , Ornithodoros/classificação , Ornithodoros/genética , Filogenia , Pichia/enzimologia , Glândulas Salivares/enzimologia , Análise de Sequência , Dióxido de Silício , África do Sul , Espectrometria de Massas em Tandem , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
11.
Proc Natl Acad Sci U S A ; 106(10): 3728-33, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234127

RESUMO

The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.


Assuntos
Aedes/química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Animais , Anopheles/química , Sítios de Ligação , Calorimetria , Leucotrieno E4/química , Ligantes , Modelos Moleculares , Norepinefrina/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
12.
J Proteomics ; 71(5): 493-512, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18725333

RESUMO

The salivary glands of blood-sucking arthropods contain a redundant 'magic potion' that counteracts their vertebrate host's hemostasis, inflammation, and immunity. We here describe the salivary transcriptome and proteomics (sialome) of the soft tick Ornithodoros coriaceus. The resulting analysis helps to consolidate the classification of common proteins found in both soft and hard ticks, such as the lipocalins, Kunitz, cystatin, basic tail, hebraein, defensin, TIL domain, metalloprotease, 5'-nucleotidase/apyrase, and phospholipase families, and also to identify protein families uniquely found in the Argasidae, such as the adrenomedullin/CGRP peptides, 7DB, 7 kDa, and the RGD-containing single-Kunitz proteins. Additionally, we found a protein belonging to the cytotoxin protein family that has so far only been identified in hard ticks. Three other unique families common only to the Ornithodoros genus were discovered. Edman degradation, 2D and 1D-PAGE of salivary gland homogenates followed by tryptic digestion and HPLC MS/MS of results confirms the presence of several proteins. These results indicate that each genus of hematophagous arthropods studied to date evolved unique protein families that assist blood feeding, thus characterizing potentially new pharmacologically active components or antimicrobial agents.


Assuntos
Aborto Espontâneo/parasitologia , Doenças dos Bovinos/parasitologia , Perfilação da Expressão Gênica , Proteoma , Proteínas e Peptídeos Salivares/genética , Infestações por Carrapato/veterinária , Carrapatos/genética , Adrenomedulina/genética , Sequência de Aminoácidos , Animais , Calcitonina/genética , Bovinos , Sequência Conservada , Feminino , Dados de Sequência Molecular , Alinhamento de Sequência , Carrapatos/patogenicidade , Tripsina
13.
Insect Biochem Mol Biol ; 38(9): 862-70, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18675910

RESUMO

Inflammation is an important vertebrate defense mechanism against ecto-parasites for which ticks have evolved numerous mechanisms of modulation. AM-33 and TSGP4, related lipocalins from the soft ticks Argas monolakensis and Ornithodoros savignyi bind cysteinyl leukotrienes with high affinity as measured by isothermal titration calorimetry. This was confirmed in a smooth muscle bioassay that measured contraction of guinea pig ileum induced by leukotriene C4 where both proteins inhibited contraction effectively. Conservation of this function in two diverse soft tick genera suggests that scavenging of cysteinyl leukotrienes evolved in the ancestral soft tick lineage. In addition soft ticks also evolved mechanisms that target other mediators of inflammation that include scavenging of histamine, serotonin, leukotriene B4, thromboxane A2, ATP and inhibition of the complement cascade. Inhibitors of blood-coagulation and platelet aggregation were also present in the ancestral soft tick lineage. Because histamine and cysteinyl leukotrienes are mainly produced by mast cells and basophils, and these cells are important in the mediation of tick rejection reactions, these findings indicate an ancient antagonistic relationship between ticks and the immune system. As such, modulation of the hemostatic system as well as inflammation was important adaptive responses in the evolution of a blood-feeding lifestyle in soft ticks.


Assuntos
Argas/metabolismo , Cisteína/metabolismo , Evolução Molecular , Leucotrienos/metabolismo , Lipocalinas/metabolismo , Filogenia , Sequência de Aminoácidos , Animais , Argas/genética , Bioensaio , Cobaias , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Ligantes , Lipocalinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
14.
Insect Biochem Mol Biol ; 38(1): 1-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18070662

RESUMO

While hard ticks (Ixodidae) take several days to feed on their hosts, soft ticks (Argasidae) feed faster, usually taking less than 1h per meal. Saliva assists in the feeding process by providing a cocktail of anti-hemostatic, anti-inflammatory and immunomodullatory compounds. Saliva of hard ticks has been shown to contain several families of genes each having multiple members, while those of soft ticks are relatively unexplored. Analysis of the salivary transcriptome of the soft tick Ornithodorus parkeri, the vector of the relapsing fever agent Borrelia parkeri, indicates that gene duplication events have led to a large expansion of the lipocalin family, as well as of several genes containing Kunitz domains indicative of serine protease inhibitors, and several other gene families also found in hard ticks. Novel protein families with sequence homology to insulin growth factor-binding protein (prostacyclin-stimulating factor), adrenomedulin, serum amyloid A protein precursor and similar to HIV envelope protein were also characterized for the first time in the salivary gland of a blood-sucking arthropod. The sialotranscriptome of O. parkeri confirms that gene duplication events are an important driving force in the creation of salivary cocktails of blood-feeding arthropods, as was observed with hard ticks and mosquitoes. Most of the genes coding for expanded families are homologous to those found in hard ticks, indicating a strong common evolutionary path between the two families. As happens to all genera of blood-sucking arthropods, several new proteins were also found, indicating the process of adaptation to blood feeding still continues to recent times.


Assuntos
Ornithodoros/metabolismo , Saliva/metabolismo , Sequência de Aminoácidos , Animais , Vetores Aracnídeos , Borrelia , Cromatografia Líquida de Alta Pressão , Cistatinas/metabolismo , Eletroforese em Gel Bidimensional , Enzimas/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Ixodidae/metabolismo , Lipocalinas/metabolismo , Dados de Sequência Molecular , Mucinas/metabolismo , Ornithodoros/microbiologia , Peptídeos/metabolismo , Polivinil , Proteômica , Glândulas Salivares/metabolismo , Espectrometria de Massas em Tandem
15.
BMC Genomics ; 7: 52, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16539713

RESUMO

BACKGROUND: Immune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine. RESULTS: Two salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined into defined families of proteins. With this comparison, we identified families of salivary proteins common among all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting gene expansion in these proteins. CONCLUSION: This comprehensive analysis allows us the identification of genus- specific proteins, species-specific proteins and, more importantly, proteins common among these different sandflies. These results give us insights into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.


Assuntos
Proteínas de Insetos/classificação , Insetos Vetores/genética , Phlebotomus/genética , Proteínas e Peptídeos Salivares/classificação , Sequência de Aminoácidos , Animais , Apirase/classificação , Evolução Molecular , Feminino , Biblioteca Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/transmissão , Dados de Sequência Molecular , Phlebotomus/imunologia , Filogenia , Proteômica , Vacinas Protozoárias/imunologia , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/imunologia , Alinhamento de Sequência , Transcrição Gênica
16.
Curr Opin Investig Drugs ; 6(11): 1131-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16312134

RESUMO

Tick histamine-binding proteins bind histamine with high affinity and specificity. This is attained by a novel binding mechanism, whereby histamine is sequestered within a binding cavity of the lipocalin fold. The histamine binding proteins and related protein family members are currently under investigation as potential therapeutic agents for the treatment of various diseases, including conjunctivitis, allergic rhinitis, carcinoid syndrome and rheumatoid arthritis. While these proteins show great therapeutic potential, they are part of a diverse family of tick lipocalin proteins, some of which have been implicated in tick-host rejection and host pathogenesis. As such, the therapeutic mining of tick lipocalins should be considered within the framework of the rest of the family.


Assuntos
Proteínas de Transporte/uso terapêutico , Proteínas de Insetos/uso terapêutico , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/uso terapêutico , Animais , Asma/tratamento farmacológico , Asma/fisiopatologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ensaios Clínicos como Assunto , Conjuntivite/tratamento farmacológico , Conjuntivite/fisiopatologia , Histamina/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Síndrome do Carcinoide Maligno/tratamento farmacológico , Conformação Proteica , Proteínas e Peptídeos Salivares/química , Carrapatos
17.
Insect Biochem Mol Biol ; 35(10): 1142-61, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16102420

RESUMO

Sequencing of an Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitz-containing proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-, 9.4- and 18.7-kDa proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histamine-binding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity. In addition, 16 novel proteins without significant similarities to other tick proteins and 37 housekeeping proteins that may be useful for phylogenetic studies are described. Some of these proteins may be useful for studying vascular biology or the immune system, for vaccine development, or as immunoreagents to detect prior exposure to ticks. Electronic version of the manuscript can be found at.


Assuntos
Proteínas de Insetos/genética , Ixodes/fisiologia , Glândulas Salivares/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Complementar/genética , Etiquetas de Sequências Expressas , Feminino , Biblioteca Gênica , Geografia , Proteínas de Insetos/química , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estados Unidos
18.
Exp Appl Acarol ; 33(1-2): 119-29, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15285144

RESUMO

Previous morphological and histochemical studies of argasid tick salivary glands indicated that they were less complex than ixodid salivary glands, with only three granular cell types. The present study shows that there exist at least four different granular cell types in the salivary glands of the argasid tick Ornithodoros savignyi, based on immuno-localization of the anti-hemostatic factors, apyrase and savignygrin. Both anti-hemostatic factors were localized to dense core granule type 'a' and to granule type 'b', that shares a similar homogenous morphology with non-labeled granule type 'd'. Furthermore, the major tick salivary gland proteins (TSGPs), previously implicated in granule biogenesis, were localized to all the granular cell types. This indicates that granular cell types with different morphologies can express the same proteins, while cell types that show similar morphologies may not express the same proteins. Argasid tick salivary glands seem to be more complex than previously thought and might not be amenable to morphological classification alone. Alternative classification methodologies that rely on physical expression patterns of the salivary gland proteome might be more reliable as markers for a specific granular cell type.


Assuntos
Argasidae/metabolismo , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Apirase/metabolismo , Argasidae/enzimologia , Argasidae/ultraestrutura , Feminino , Imuno-Histoquímica , Proteínas de Insetos , Proteínas/metabolismo , Glândulas Salivares/enzimologia , Glândulas Salivares/ultraestrutura
19.
Mol Biol Evol ; 20(7): 1158-67, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12777525

RESUMO

The origins of tick toxicoses remain a subject of controversy because no molecular data are yet available to study the evolution of tick-derived toxins. In this study we describe the molecular structure of toxins from the soft tick, Ornithodoros savignyi. The tick salivary gland proteins (TSGPs) are four highly abundant proteins proposed to play a role in salivary gland granule biogenesis of the soft tick O. savignyi, of which the toxins TSGP2 and TSGP4 are a part. They were assigned to the lipocalin family based on sequence similarity to known tick lipocalins. Several other tick lipocalins were also identified using Smith-Waterman database searches, bringing the tick lipocalin family up to 20. Phylogenetic analysis showed that most tick lipocalins group within genus-specific clades, suggesting that gene duplication and divergence of tick lipocalin function occurred after tick speciation, most probably during the evolution of a hematophagous lifestyle. TSGP2 and TSGP3 show high sequence identity and group terminal to moubatin, an inhibitor of collagen-induced platelet aggregation from the tick, O. moubata. However, no platelet aggregation inhibitory activity is associated with the TSGPs using ADP or collagen as agonists, suggesting that TSGP2 and TSGP3 duplicated after divergence of O. savignyi and O. moubata. This timing is supported by the absence of TSGP2-4 in the salivary gland extracts of O. moubata. The absence of TSGP2 and TSGP4 in salivary gland extracts from O. moubata correlates with the nontoxicity of this tick species. The implications of this study are that the various forms of tick toxicoses do not have a common origin, but must have evolved independently in those tick species that cause pathogenesis.


Assuntos
Variação Genética , Ornithodoros/fisiologia , Glândulas Salivares/fisiologia , Proteínas e Peptídeos Salivares/genética , Toxinas Biológicas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Inibidores de Cisteína Proteinase , Evolução Molecular , Duplicação Gênica , Lipocalina 1 , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Agregação Plaquetária , Dobramento de Proteína , Coelhos , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/imunologia , Homologia de Sequência de Aminoácidos , Infestações por Carrapato , Toxinas Biológicas/química , Toxinas Biológicas/toxicidade
20.
J Biol Chem ; 277(24): 21371-8, 2002 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-11932256

RESUMO

Savignygrin, a platelet aggregation inhibitor that possesses the RGD integrin recognition motif, has been purified from the soft tick Ornithodoros savignyi. Two isoforms with similar biological activities differ because of R52G and N60G in their amino acid sequences, indicating a recent gene duplication event. Platelet aggregation induced by ADP (IC50, 130 nm), collagen, the thrombin receptor-activating peptide, and epinephrine was inhibited, although platelets were activated and underwent a shape change. The binding of alpha-CD41 (P2) to platelets, the binding of purified alpha(IIb)beta3 to fibrinogen, and the adhesion of platelets to fibrinogen was inhibited, indicating a targeting of the fibrinogen receptor. In contrast, the adhesion of osteosarcoma cells that express the integrin alpha(v)beta3 to vitronectin or fibrinogen was not inhibited, indicating the specificity of savignygrin toward alpha(IIb)beta3. Savignygrin shows sequence identity to disagregin, a platelet aggregation inhibitor from the tick Ornithodoros moubata that lacks an RGD motif. The cysteine arrangement of savignygrin is similar to that of the bovine pancreatic trypsin inhibitor family of serine protease inhibitors. A homology model based on the structure of the tick anticoagulant peptide indicates that the RGD motif is presented on the substrate-binding loop of the canonical BPTI inhibitors. However, savignygrin did not inhibit the serine proteases fXa, plasmin, thrombin, or trypsin. This is the first report of a platelet aggregation inhibitor that presents the RGD motif using the Kunitz-BPTI protein fold.


Assuntos
Oligopeptídeos/química , Inibidores da Agregação Plaquetária/farmacologia , Proteínas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aprotinina/química , Sequência de Bases , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Proteínas de Insetos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ornithodoros/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/biossíntese , Ligação Proteica , Dobramento de Proteína , Isoformas de Proteínas , Estrutura Terciária de Proteína , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Carrapatos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA