Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 21(12): e13739, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403077

RESUMO

Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.


Assuntos
Aminoácidos Sulfúricos , Cisteína , Masculino , Feminino , Camundongos , Humanos , Animais , Cisteína/metabolismo , Metabolismo dos Lipídeos , Estudos Transversais , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Obesidade/metabolismo , Serina/metabolismo
2.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011778

RESUMO

The objective of this study was to determine the minimum requirement (MR) for methionine (Met), when cyst(e)ine (Cys) is provided in excess, in adult dogs of three different breed sizes using the indicator amino acid (AA) oxidation (IAAO) technique. In total, 12 adult dogs were used: 1 neutered and 3 spayed Miniature Dachshunds (4.8 ± 0.4 kg body weight [BW], mean ± SD), 4 spayed Beagles (9.5 ± 0.7 kg BW, mean ± SD), and 4 neutered Labrador Retrievers (31.8 ± 1.7 kg BW, mean ± SD). A deficient Met basal diet with excess Cys was formulated. Dogs were fed the basal diet randomly supplemented with different Met-Alanine (Ala) solutions to achieve final Met concentrations in experimental diets of 0.21%, 0.26%, 0.31%, 0.36%, 0.41%, 0.46%, and 0.66% (as-fed basis). After 2 d of adaptation to the experimental diets, dogs underwent individual IAAO studies. During the IAAO study day, the total feed was divided into 13 equal meals; at the sixth meal, dogs were fed a bolus of l-[1-13C]-phenylalanine (Phe), and thereafter, l-[1-13C]-Phe was supplied with every meal. The total production of 13CO2 during isotopic steady state was determined by the enrichment of 13CO2 in breath samples, and the total production of CO2 measured using indirect calorimetry. The mean MR for Met and the upper 95% confidence limit (CL) were determined using a two-phase linear mixed-effects regression model. For Miniature Dachshunds, the MR for Met was between the first two dietary Met concentrations and is, therefore, between 35.7 and 44.1 mg.kg BW-1·d-1 (0.21% to 0.26%, as-fed basis; no requirement could be determined on a metabolic BW basis). For Beagles and Labrador Retrievers, the MR for Met was 57.5 and 50.4 mg.kg BW-1·d-1, 107.7 and 121.8 mg/kg BW^0.75, or 0.338 and 0.360%, respectively (as-fed basis). The upper 95% CL of Met requirements was 77.9 and 72.4 mg.kg BW-1·d-1, 147.8 and 159.6 mg/kg BW^0.75,or 0.458 and 0.517% for Beagles, and Labradors, respectively (as-fed basis). When pooling data from Beagles and Labrador Retrievers, the MR and upper 95% CL were 56.0 and 75.8 mg.kg BW-1·d-1 or 118.4 and 150.5 mg/kg BW^0.75 or 0.360% and 0.482% (as-fed basis). In conclusion, the MR and the upper 95% CL for Met are different for Dachshunds when compared with Beagles and Labrador Retrievers. Using this low-protein diet, the estimated upper 95% CL Met requirement for Beagles and Labrador is higher than those recommended in the National Research Council (NRC), but NRC is similar to the estimated upper 95% CL for Dachshunds.


Assuntos
Aminoácidos/metabolismo , Cães/fisiologia , Metionina/metabolismo , Necessidades Nutricionais , Animais , Peso Corporal , Calorimetria Indireta/veterinária , Dieta/veterinária , Feminino , Masculino , Oxirredução , Fenilalanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA