Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hemasphere ; 7(8): e931, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492437

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.

2.
Front Immunol ; 14: 1192333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304257

RESUMO

In acute myeloid leukemia (AML), malignant stem cells hijack the normal bone marrow niche where they are largely protected from the current therapeutic approaches. Thus, eradicating these progenitors is the ultimate challenge in the treatment of this disease. Specifically, the development of chimeric antigen receptors (CARs) against distinct mesenchymal stromal cell subpopulations involved in the maintenance of leukemic stem cells within the malignant bone marrow microenvironment could represent a new strategy to improve CAR T-cell therapy efficacy, which is still unsuccessful in AML. As a proof of concept, we generated a novel prototype of Tandem CAR, with one specificity directed against the leukemic cell marker CD33 and the other against the mesenchymal stromal cell marker CD146, demonstrating its capability of simultaneously targeting two different cell types in a 2D co-culture system. Interestingly, we could also observe an in vitro inhibition of CAR T cell functionality mediated by stromal cells, particularly in later effector functions, such as reduction of interferon-gamma and interleukin-2 release and impaired proliferation of the CAR+ effector Cytokine-Induced Killer (CIK) cells. Taken together, these data demonstrate the feasibility of a dual targeting model against two molecules, which are expressed on two different target cells, but also highlight the immunomodulatory effect on CAR CIK cells exerted by stromal cells, confirming that the niche could be an obstacle to the efficacy of CAR T cells. This aspect should be considered in the development of novel CAR T cell approaches directed against the AML bone marrow niche.


Assuntos
Células Matadoras Induzidas por Citocinas , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Leucemia Mieloide Aguda/terapia , Imunoterapia Adotiva , Interferon gama , Microambiente Tumoral
3.
Ann Med ; 55(1): 2205659, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37143345

RESUMO

AIM: The effect of liposomes bi-functionalized with phosphatidic acid and with a synthetic peptide derived from human apolipoprotein E has been evaluated on the aggregation features of different amyloidogenic proteins: human Amyloid ß1-40 (Aß1-40), transthyretin (TTR) variant S52P, human ß2microglobulin (ß2m) variants ΔN6 and D76N, Serum Amyloid A (SAA). METHODS: The formation of fibrillar aggregates of the proteins was investigated by ThioflavinT fluorescence assay and validated by Atomic Force Microscopy. RESULTS: The results show that liposomes are preventing the transition of non-aggregated forms to the fibrillar state, with stronger effects on Aß1-40, ß2m ΔN6 and SAA. Liposomes also induce disaggregation of the amyloid aggregates of all the proteins investigated, with stronger effects on Aß1-40, ß2 D76N and TTR.SPR assays show that liposomes bind Aß1-40 and SAA aggregates with high affinity (KD in the nanomolar range) whereas binding to TTR aggregates showed a lower affinity (KD in the micromolar range). Aggregates of ß2m variants showed both high and low affinity binding sites. Computed Structural analysis of protein fibrillar aggregates and considerations on the multidentate features of liposomes allow to speculate a common mechanism of action, based on binding the ß-stranded peptide regions responsible for the amyloid formation. CONCLUSION: Thus, multifunctional liposomes perform as pharmacological chaperones with anti-amyloidogenic activity, with a promising potential for the treatment of a number of protein-misfolding diseases.Key messageAmyloidosis is a group of diseases, each due to a specific protein misfolding.Anti-amyloidogenic nanoparticles have been gaining the utmost importance as a potential treatment for protein misfolding disorders.Liposomes bi-functionalized with phosphatidic acid and with a synthetic peptide derived from human apolipoprotein E showed anti-amyloidogenic activity.


Assuntos
Amiloide , Lipossomos , Humanos , Amiloide/química , Amiloide/metabolismo , Agregados Proteicos , Chaperonas Moleculares , Ácidos Fosfatídicos , Apolipoproteínas
4.
Nucleic Acids Res ; 49(17): 9724-9737, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34478543

RESUMO

G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit*. For these sequences available studies cover ensemble and single-molecule analyses, although for kit* the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit* are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Sequência de Bases , DNA/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Oligonucleotídeos , Cloreto de Potássio
5.
Nucleic Acids Res ; 49(8): 4564-4573, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849064

RESUMO

G-quadruplexes (G4s) are tetrahelical DNA structures stabilized by four guanines paired via Hoogsteen hydrogen bonds into quartets. While their presence within eukaryotic DNA is known to play a key role in regulatory processes, their functional mechanisms are still under investigation. In the present work, we analysed the nanomechanical properties of three G4s present within the promoter of the KIT proto-oncogene from a single-molecule point of view through the use of magnetic tweezers (MTs). The study of DNA extension fluctuations under negative supercoiling allowed us to identify a characteristic fingerprint of G4 folding. We further analysed the energetic contribution of G4 to the double-strand denaturation process in the presence of negative supercoiling, and we observed a reduction in the energy required for strands separation.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Proteínas Proto-Oncogênicas c-kit/química , Imagem Individual de Molécula/métodos , DNA Super-Helicoidal/química , Cinética , Desnaturação de Ácido Nucleico , Oncogenes , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Imagem Individual de Molécula/instrumentação
6.
Nat Commun ; 11(1): 5938, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230096

RESUMO

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.


Assuntos
Etanolaminas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Quebras de DNA/efeitos dos fármacos , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Etanolaminas/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo , Tigeciclina/farmacologia
7.
Curr Pharm Des ; 22(44): 6596-6611, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27587197

RESUMO

DNA damaging agents including anthracyclines, camptothecins and platinum drugs are among most frequently used drugs in the chemotherapeutic routine. Due to their relatively low selectivity for cancer cells, administration of these drugs is associated with adverse side effects, inherent genotoxicity with risk of developing secondary cancers. Development of new drugs, which could be spared of these drawbacks and characterize by improved antitumor efficacy, remains challenging yet vitally important task. These properties are in large part dictated by the selectivity of interaction between the drug and DNA and in this way the studies aimed at elucidating the complex interactions between ligand and DNA represent a key step in the drug development. Studies of the drug-DNA interactions encompass determination of DNA sequence specificity and mode of DNA binding as well as kinetic, dynamic and structural parameters of binding. Here, we consider the types of interactions between small molecule ligands and polynucleotides, how they are affected by DNA sequence and structure, and what is their significance for the antitumor activity. Based on this knowledge, we discuss the wide array of experimental techniques available to researchers for studying drug-DNA interactions, which include absorption and emission spectroscopies, NMR, magnetic and optical tweezers or atomic force microscopy. We show, using the clinical and experimental anticancer drugs as examples, how these methods provide various types of information and at the same time complement each other to provide full picture of drug- DNA interaction and aid in the development of new drugs.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Antineoplásicos/química , DNA/química , Humanos , Microscopia de Força Atômica , Pinças Ópticas , Análise Espectral/métodos
8.
Biophys J ; 110(10): 2151-61, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27224480

RESUMO

Platinum-containing molecules are widely used as anticancer drugs. These molecules exert cytotoxic effects by binding to DNA through various mechanisms. The binding between DNA and platinum-based drugs hinders the opening of DNA, and therefore, DNA duplication and transcription are severely hampered. Overall, impeding the above-mentioned important DNA mechanisms results in irreversible DNA damage and the induction of apoptosis. Several molecules, including multinuclear platinum compounds, belong to the family of platinum drugs, and there is a body of research devoted to developing more efficient and less toxic versions of these compounds. In this study, we combined different biophysical methods, including single-molecule assays (magnetic tweezers) and bulk experiments (ultraviolet absorption for thermal denaturation) to analyze the differential stability of double-stranded DNA in complex with either cisplatin or multinuclear platinum agents. Specifically, we analyzed how the binding of BBR3005 and BBR3464, two representative multinuclear platinum-based compounds, to DNA affects its stability as compared with cisplatin binding. Our results suggest that single-molecule approaches can provide insights into the drug-DNA interactions that underlie drug potency and provide information that is complementary to that generated from bulk analysis; thus, single-molecule approaches have the potential to facilitate the selection and design of optimized drug compounds. In particular, relevant differences in DNA stability at the single-molecule level are demonstrated by analyzing nanomechanically induced DNA denaturation. On the basis of the comparison between the single-molecule and bulk analyses, we suggest that transplatinated drugs are able to locally destabilize small portions of the DNA chain, whereas other regions are stabilized.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Algoritmos , Cisplatino/farmacologia , DNA/metabolismo , Congelamento , Estrutura Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Plasmídeos/genética , Análise Espectral
9.
J Pharm Sci ; 105(1): 276-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852859

RESUMO

Surface functionalization with antitransferrin receptor (TfR) mAbs has been suggested as the strategy to enhance the transfer of nanoparticles (NPs) across the blood-brain barrier (BBB) and to carry nonpermeant drugs from the blood into the brain. However, the efficiency of BBB crossing is currently too poor to be used in vivo. In the present investigation, we compared 6 different murine mAbs specific for different epitopes of the human TfR to identify the best performing one for the functionalization of NPs. For this purpose, we compared the ability of mAbs to cross an in vitro BBB model made of human brain capillary endothelial cells (hCMEC/D3). Liposomes functionalized with the best performing mAb (MYBE/4C1) were uptaken, crossed the BBB in vitro, and facilitated the BBB in vitro passage of doxorubicin, an anticancer drug, 3.9 folds more than liposomes functionalized with a nonspecific IgG, as assessed by confocal microscopy, radiochemical techniques, and fluorescence, and did not modify the cell monolayer structural or functional properties. These results show that MYBE/4C1 antihuman TfR mAb is a powerful resource for the enhancement of BBB crossing of NPs and is therefore potentially useful in the treatment of neurologic diseases and disorders including brain carcinomas.


Assuntos
Anticorpos Bloqueadores/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Capilares/efeitos dos fármacos , Capilares/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Células Endoteliais , Epitopos , Humanos , Imunoglobulina G/química , Lipossomos , Camundongos , Tamanho da Partícula
10.
Nucleic Acids Res ; 43(22): 10722-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26354864

RESUMO

Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed.


Assuntos
Metilação de DNA , DNA/química , Fluorometria , Desnaturação de Ácido Nucleico , Sondas de Oligonucleotídeos , Temperatura , Termodinâmica
11.
Macromol Biosci ; 15(12): 1687-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26198385

RESUMO

In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors.


Assuntos
Acrilamidas/química , Apolipoproteínas E , Barreira Hematoencefálica/metabolismo , Doxorrubicina , Portadores de Fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanopartículas/química , Poliestirenos/química , Apolipoproteínas E/química , Apolipoproteínas E/farmacocinética , Apolipoproteínas E/farmacologia , Linhagem Celular , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos
12.
Eur Biophys J ; 39(12): 1613-23, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20694815

RESUMO

ß-Amyloid peptide (Aß) plays a key role in the pathogenesis of Alzheimer disease (AD). Monomeric Aß undergoes aggregation, forming oligomers and fibrils, resulting in the deposition of plaques in the brain of AD patients. A widely used protocol for fibril formation in vitro is based on incubation of the peptide at low pH and ionic strength, which generates Aß fibrils several microns long. What happens to such fibrils once they are brought to physiological pH and ionic strength for biological studies is not fully understood. In this investigation, we show that these changes strongly affect the morphology of fibrils, causing their fragmentation into smaller ones followed by their aggregation into disordered structures. We show that an increase in pH is responsible for fibril fragmentation, while increased ionic strength is responsible for the aggregation of fibril fragments. This behavior was confirmed on different batches of peptide either produced by the same company or of different origin. Similar aggregates of short fibrils are obtained when monomeric peptide is incubated under physiological conditions of pH and ionic strength, suggesting that fibril morphology is independent of the fibrillation protocol but depends on the final chemical environment. This was also confirmed by experiments with cell cultures showing that the toxicity of fibrils with different initial morphology is the same after addition to the medium. This information is of fundamental importance when Aß fibrils are prepared in vitro at acidic pH and then diluted into physiological buffer for biological investigations.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Amiloide/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Concentração Osmolar , Fragmentos de Peptídeos/ultraestrutura , Estabilidade Proteica , Espalhamento de Radiação , Células Tumorais Cultivadas
13.
Nucleic Acids Res ; 38(20): 7089-99, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20601682

RESUMO

Herein, we study the nanomechanical characteristics of single DNA molecules in the presence of DNA binders, including intercalating agents (ethidium bromide and doxorubicin), a minor groove binder (netropsin) and a typical alkylating damaging agent (cisplatin). We have used magnetic tweezers manipulation techniques, which allow us to measure the contour and persistence lengths together with the bending and torsional properties of DNA. For each drug, the specific variations of the nanomechanical properties induced in the DNA have been compared. We observed that the presence of drugs causes a specific variation in the DNA extension, a shift in the natural twist and a modification of bending dependence on the imposed twist. By introducing a naive model, we have justified an anomalous correlation of torsion data observed in the presence of intercalators. Finally, a data analysis criterion for discriminating between different molecular interactions among DNA and drugs has been suggested.


Assuntos
DNA/química , Antineoplásicos Alquilantes/farmacologia , Fenômenos Biomecânicos , Cisplatino/farmacologia , DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Etídio/farmacologia , Substâncias Intercalantes/farmacologia , Ligantes , Magnetismo , Netropsina/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA