Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Phytomedicine ; 128: 155536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513379

RESUMO

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Assuntos
Apoptose , Caspase 3 , Caspase 7 , Neoplasias Pulmonares , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Caspase 7/metabolismo , Asteraceae/química , Lactonas/farmacologia , Células A549 , Proliferação de Células/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Folhas de Planta/química , Animais , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia
2.
J Toxicol Environ Health A ; 87(7): 294-309, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279841

RESUMO

Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.


Assuntos
Antioxidantes , Benzodioxóis , Dano ao DNA , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Células MCF-7 , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , RNA Mensageiro , Linhagem Celular Tumoral
3.
Biomed Pharmacother ; 170: 115979, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061138

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 µM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 µM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and ß-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Feminino , Humanos , Animais , Camundongos , Ovinos , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Estresse Oxidativo , Estresse Fisiológico
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1561-1573, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37672080

RESUMO

Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.


Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Células HT29 , Apoptose , Antineoplásicos/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular Tumoral , RNA Mensageiro
5.
J Toxicol Environ Health A ; 86(22): 859-870, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37671809

RESUMO

Curcumin is an antiproliferative phytochemical extracted from Curcuma longa L and which has been studied in preclinical drug screening using cell monolayers and animal models. However, several limitations of these culture systems may be overcome by performing screening with three-dimensional (3-D) cell culture. The aim of this study was to investigate the effects of curcumin on cytotoxicity and genotoxicity as well as spheroid growth using cervical adenocarcinoma HeLa cell spheroids by performing RT-PCR mRNA expression of genes involved in cell death (CASP3, CASP8, CASP9, PARP1, BBC3, BIRC5, BCL2, TNF), autophagy (BECN1, SQSTM1), cell cycle regulation (TP53, C-MYC, NF-kB, CDKN1A, m-TOR, TRAF-2), DNA damage repair (H2AFX, GADD45A, GADD45G), oxidative stress (GPX1), reticulum stress (EIF2AK3, ERN1), and invasion (MMP1, MMP9) was investigated. Curcumin was cytotoxic in a concentration-dependent manner. Curcumin-treated spheroids exhibited lower proliferative recovery and cell proliferation attenuation, as observed in the clonogenic assay. Further, no marked genotoxicity was detected. Curcumin-treated spheroids displayed reduced expression of BECN1 (2.9×), CASP9 (2.1×), and PARP1 (2.1×) mRNA. PARP1 inhibition suggested disruption of essential pathways of proliferation maintenance. Downregulated expression of CASP9 mRNA and unchanged expression of CASP3/8 mRNA suggested caspase-independent cell death, whereas downregulated expression of BECN1 mRNA indicated autophagic disruption. Therefore, curcumin exhibits the potential for drug development with antiproliferative activity to be considered for use in cancers.


Assuntos
Curcumina , Animais , Humanos , Curcumina/farmacologia , Caspase 3 , Células HeLa , Caspases , Proliferação de Células
6.
Life Sci ; 330: 122033, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598976

RESUMO

Aim Overcoming resistance to apoptosis and antimitotic chemotherapy is crucial for effective treatment of lung cancer. Diosgenin (DG), a promising phytochemical, can regulate various molecular pathways implicated in tumor formation and progression. However, the precise biological activity of DG in lung cancer remains unclear. This study aimed to investigate the antiproliferative activity of DG in NCI-H460 lung carcinoma cells to explore the underlying antimitotic mechanisms and alternative cell death pathways. MATERIALS AND METHODS: In a 2D culture system, we analyzed cell viability, multinucleated cell frequency, cell concentration, cell cycle changes, cell death induction, intracellular reactive oxygen species (ROS) production, and nuclear DNA damage, particularly in relation to target gene expression. We also evaluated the antiproliferative activity of DG in a 3D culture system of spheroids, assessing volume changes, cell death induction, and inhibition of proliferation recovery and clonogenic growth. KEY FINDINGS: DG reduced cell viability and concentration while increasing the frequency of cells with multiple nuclei, particularly binucleated cells resulting from daughter cell fusion. This effect was associated with genes involved in cytokinesis regulation (RAB35, OCRL, BIRC5, and AURKB). Additionally, DG-induced cell death was linked to necroptosis, as evidenced by increased intracellular ROS production and RIPK3, MLKL, TRAF2, and HSPA5 gene expression. In tumor spheroids, DG increased spheroid volume, induced cell death, and inhibited proliferation recovery and clonogenic growth. SIGNIFICANCE: Our study provides new insights into the biological activities of DG in lung cancer cells, contributing to the development of novel oncological therapies.


Assuntos
Antimitóticos , Diosgenina , Neoplasias Pulmonares , Humanos , Citocinese , Necroptose , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Divisão Celular , Diosgenina/farmacologia , Pulmão
7.
J Toxicol Environ Health A ; 86(11): 361-371, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37096566

RESUMO

Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.


Assuntos
Leucócitos Mononucleares , Rubus , Humanos , Extratos Vegetais/toxicidade , Testes para Micronúcleos , Ensaio Cometa , Dano ao DNA , Mutagênicos , Folhas de Planta
8.
Life Sci ; 319: 121530, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863486

RESUMO

AIMS: Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS: We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS: Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE: Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Linhagem Celular Tumoral , Lactatos
9.
Toxicol In Vitro ; 86: 105485, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36279965

RESUMO

Rubus rosifolius, popularly known as "red mulberry", is a common medicinal plant in southern Brazil and is used as an antidiarrheal, analgesic, antimicrobial and antihypertensive, and to treat stomach diseases. The aim of this study was to analyze the R. rosifolius stem extract (RrSE) for possible in vitro cytotoxic and genotoxic effects, using the comet assay and the micronucleus test to assess genotoxicity, and flow cytometry to assess the impact on the cell cycle and apoptosis in HepG2/C3A cells, in addition to evaluating the expression of genes linked to the induction of DNA damage, cell cycle, apoptosis and metabolism of xenobiotics. The MTT assay observed no cytotoxic effects at concentrations between 0.01 and 100 µg/mL of the extract. However, genotoxic effects occurred in treatments with the extract from a 1 µg/mL concentration. Flow cytometry analysis revealed a significant increase in cells in the G2/M phase after treatment with 10 µg/mL, a decrease in cells in the G0/G1 phase in the treatment with 100 µg/mL, and a significant increase in total apoptotic cells. In the gene expression analysis, an increase in the CYP1A2 xenobiotics metabolizing gene expression was observed. Despite the promising pharmacological effects of R. rosifolius, the results revealed that the RrSE has genotoxic effect and induces apoptosis in HepG2/C3A cells, indicating danger in using this plant extract by humans.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Rubus , Humanos , Apoptose , Dano ao DNA , Extratos Vegetais/toxicidade , Extratos Vegetais/análise , Células Hep G2 , Linhagem Celular
10.
Toxicol In Vitro ; 85: 105474, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122806

RESUMO

Zerumbone (ZER) is a phytochemical with antioxidant and antiproliferative properties. This study evaluated the cytoxicity of ZER combined with chemotherapeutic agents and the expression of mRNA genes related to cell cycle, cell death, xenobiotic metabolism, DNA damage, and endoplasmic reticulum (ER) stress in HepG2/C3A cells. ZER was cytotoxic (IC50, 44.31 µM). ZER-induced apoptosis was related to BBC3 and ERN1 upregulation (ER stress), and its antiproliferative effects were attributable to MYC, IGF1, and NF-kB mRNA inhibition. ZER-induced G2/M arrest and DNA damage was associated with mRNA expression of cell cycle (CDKN1A) and DNA damage (GADD45A) genes. Increased CYP1A2 and CYP2C19 mRNA expression suggested ZER metabolization, and reduced CYP1A1 and CYP2D6 expression indicated a longer time of action of ZER in the cell, enhancing its pharmacological effect. ZER downregulated TP53, PARP1, BIRC5 (apoptosis), and MAP1LC3A (autophagy). In apoptosis assay, the data of the association treatments with ZER suggested antagonism. In cytotoxicity assay, the data of the association treatments with ZER suggested synergism action to cisplatin and antagonism action to doxorubicin and 5-fluorouracil. Thus, ZER has potential for application in chemotherapy as it modulates mRNA targets; however, it may not have the desired efficiency when combined with other chemotherapeutic agents.


Assuntos
Antineoplásicos , Sesquiterpenos , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Cisplatino/farmacologia , Antioxidantes/farmacologia , NF-kappa B , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP1A1 , Xenobióticos/farmacologia , Sesquiterpenos/farmacologia , Apoptose , Dano ao DNA , Antineoplásicos/farmacologia , Compostos Fitoquímicos/farmacologia , RNA Mensageiro , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Linhagem Celular Tumoral
11.
J Toxicol Environ Health A ; 85(21): 896-911, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950849

RESUMO

Fluopsin C is an antibiotic compound derived from secondary metabolism of different microorganisms, which possesses antitumor, antibacterial, and antifungal activity. Related to fluopsin C antiproliferative activity, the aim of this study was to examine the following parameters: cytotoxicity, genotoxicity, cell cycle arrest, cell death induction (apoptosis), mitochondrial membrane potential (MMP), colony formation, and mRNA expression of genes involved in adaptive stress responses and cellular death utilizing a monolayer. In addition, a three-dimensional cell culture was used to evaluate the effects on growth of tumor spheroids. Fluopsin C was cytotoxic (1) producing cell division arrest in the G1 phase, (2) elevating expression of mRNA of the CDKN1A gene and (3) decrease in expression of mRNA H2AFX gene. Further, fluopsin C enhanced DNA damage as evidenced by increased expression of mRNA of GADD45A and GPX1 genes, indicating that reactive oxygen species (ROS) may be involved in the observed genotoxic response. Reticulum stress was also detected as noted from activation of the ribonuclease inositol-requiring protein 1 (IRE1) pathway, since a rise in mRNA expression of the ERN1 and TRAF2 genes was observed. During the cell death process, an increase in mRNA expression of the BBC3 gene was noted, indicating participation of this antibiotic in oncotic (ischemic) cell death. Data thus demonstrated for the first time that fluopsin C interferes with the volume of tumor spheroids, in order to attenuate their growth. Our findings show that fluopsin C modulates essential molecular processes in response to stress and cell death.


Assuntos
Apoptose , Dano ao DNA , Antibacterianos/farmacologia , Morte Celular , Humanos , Hidroxilaminas , Células MCF-7 , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Obes (Lond) ; 46(11): 2006-2012, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987956

RESUMO

BACKGROUND/OBJECTIVE: There is evidence that metabolic profile changes after Roux-Y gastric bypass (RYGB), especially due to modifications in the gastrointestinal tract. In addition, previous studies have suggested that probiotics can modify the microbiome and produce metabolites important for metabolic health maintenance. In this sense, the aim of this study was to verify the influence of probiotic supplementation on the plasma metabolite profile after RYGB. METHODS: This was a randomized, double-blind, placebo-controlled clinical trial conducted with 31 patients subjected to RYGB surgery, randomized in probiotic group that was supplemented with a probiotic supplement (FloraVantage®) for 3 months after surgery or a placebo group. Plasma metabonomics was performed using nuclear magnetic resonance (NMR) at the preoperative period (T0) and at 45-50 days (T1) and 90-95 days (T2) during the postoperative period/intervention. RESULTS: Reductions in trimethylamine-N-oxide (TMAO) and alanine were observed in both groups, however this reduction was greater in the probiotic group (TMAO 13.82%, p = 0.01 and alanine 14.03%, p = 0.03) at T2. Additionally, ß-hydroxybutyrate (BHB) levels increased 10.77% in the probiotic group (p = 0.03) compared to the placebo group at T2. CONCLUSION: Supplementation with Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 was able to associate with significant differences in relevant plasma metabolites associated with improved metabolic health.


Assuntos
Derivação Gástrica , Probióticos , Humanos , Ácido 3-Hidroxibutírico , Estudos Prospectivos , Glicemia/metabolismo , Probióticos/uso terapêutico , Suplementos Nutricionais , Método Duplo-Cego , Alanina , Óxidos
13.
Toxicol Appl Pharmacol ; 452: 116178, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914560

RESUMO

1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.


Assuntos
Antineoplásicos , Estresse do Retículo Endoplasmático , Antineoplásicos/farmacologia , Apoptose , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Colecalciferol/farmacologia , Humanos , Células MCF-7 , Piranos
14.
Artigo em Inglês | MEDLINE | ID: mdl-35914860

RESUMO

Preclinical studies have shown that diosgenin, a steroidal sapogenin, is a promising phytochemical for treating different pathological conditions, such as cancer, diabetes, and cardiovascular diseases. However, the toxicological safety of this molecule for therapeutic use in humans needs to be better understood. Thus, this study aimed to evaluate the mechanisms of action of diosgenin in HepG2/C3A human hepatocellular carcinoma cells. Cytotoxicity, genotoxicity, alterations in the cell cycle, and cell death (apoptosis) were investigated and associated with the gene expression profile of pathways involved in these processes. The effects of diosgenin on the growth of spheroids were also tested. Diosgenin induced a dose-dependent reduction in cell viability and cell cycle arrest in S and G2/M phases and apoptosis in response to DNA damage. Apoptosis was associated with an increase in the expression of BBC3, a participant in the intrinsic apoptosis pathway. Diosgenin also promoted an increase in volume and greater cellular breakdown in spheroids. These results allowed a better understanding of the toxicity of diosgenin in human cells and contributed to the development of treatments based on this phytochemical.


Assuntos
Carcinoma Hepatocelular , Diosgenina , Neoplasias Hepáticas , Apoptose , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/genética , Comunicação Celular , Diosgenina/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas
15.
Toxicol In Vitro ; 83: 105392, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35605793

RESUMO

Pentaclethra macroloba (Willd.) Kuntze seeds oil has been used as a topical healing agent, applied mainly to parturients and snake bites. The objective was to investigate the effects of pracaxi oil (POP) on HepG2/C3A cells under cytogenotoxicity, cell cycle and apoptosis influence, and expression of metabolism and other related cell types proliferation genes. Cytotoxicity was analyzed by MTT test and apoptosis and cell cycle interferences by flow cytometry. To identify genotoxicity were used comet and micronucleus tests. RT-qPCR investigated gene expression. PO chemical characterization has shown two significant triterpenes, identified as oleanolic acid and hederagenin. The results showed that the PO did not reduce cell viability at concentrations ranging from 31 to 500 µg/ml. Comet and micronucleus assays revealed the absence of genotoxic effects, and flow cytometry showed no cell cycle or apoptosis disturbance. RT-qPCR indicated that PO up-regulated genes related to metabolism (CYP3A4, CYP1A2, CYP1A1), cell proliferation (mTOR), and oxidative stress (GPX1). The data indicate that PO has no cytogenotoxic effects and suggest that it activated the PI3/AKT/mTOR cascade of cell growth and proliferation. Inside the cells, the PO activated xenobiotic metabolizing genes, responsible for reactive oxygen species (ROS) generation, can neutralize ROS with increased GPX1 gene expression without genetic damage, interruption of the cell cycle, or induction of apoptosis.


Assuntos
Estresse Oxidativo , Xenobióticos , Proliferação de Células , Dano ao DNA , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Xenobióticos/farmacologia
16.
Toxicol Mech Methods ; 32(5): 341-351, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34806536

RESUMO

Salinomycin (SAL) is a monocarboxylic polyether ionophore antibiotic isolated from Streptomyces albus. It exhibits an effective antitumor potential against numerous human cancer cells. This study aimed to assess the antiproliferative effects of SAL in human hepatocellular carcinoma HepG2/C3a cell line. We investigated the effects of SAL on cell growth, DNA damage induction, cell cycle changes and apoptosis; and relative changes in expression of cell cycle-related, apoptosis-related, and CYP450 genes. SAL induced cell cycle arrest in the G2/M phase, upregulation of CDKN1A and GADD45A and downregulation of cyclin genes including CCNB1 and CCNA2. SAL effectively suppressed mRNA levels of CTNNB1 gene, an important oncogene that promotes tumorigenesis. The decrease of HepG2/C3A cells' survival can also be due to downregulation of antiapoptotic BCL-2 expression, thus promoting the induction of apoptosis by SAL. This study also demonstrated the ability of SAL in modulating hepatic cytochrome P450 (CYP) mRNA expression, such that SAL caused the upregulation of CYP1A members and CYP3A5; and downregulation of CYP3A4. Taken together, these data contribute to the understanding of the mechanism of action of SAL, highlighting that metabolizing enzymes modulated by SAL can interfere with chemotherapy treatment and it must be considered in associated treatments.


Assuntos
Apoptose , Neoplasias Hepáticas , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sistema Enzimático do Citocromo P-450/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Piranos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Curr Pharm Biotechnol ; 23(13): 1623-1633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923937

RESUMO

BACKGROUND: Appropriate substituents in the galloyl group could lead to significant biological properties. OBJECTIVES: Novel galloyl-substituted compounds bearing 2-substituted-1, 3, 4-oxadiazol-5-yl, 5- substituted-1,2,4-triazol-3-yl, and carboxamide groups were synthesized and evaluated for their antiproliferative activity. Additionally, galloyl hydrazide (2) was evaluated by performing cytotoxicity, membrane integrity, cell cycle, and apoptosis assays in HepG2/C3A cells. METHODS: General procedure was used for the synthesis of galloyl-substituted (3-9, 11) and characterized by their spectroscopic data (1H and 13C NMR). The antiproliferative activity of all novel galloyl derivatives was evaluated against nine human tumors and one nontumoral cell line. Three response parameters (GI50, TGI, and LC50) were calculated. The cytotoxicity test was performed for the resazurin assay. The membrane integrity, cell cycle, and apoptosis assays were performed by flow cytometry. RESULTS: The substitution of the methoxy group of the galloyl ring system for a carboxamide group (3, 4, 5, and 6) produced compounds with moderate antitumoral activity, particularly 6, against six human cancer cell lines, K-562, PC-3, NCI-ADR/RES, OVCAR, 786-0 and NCI-H460, with GI50 values ≤ 9.45 µg/mL. Triazole derivatives 7 and 8 exhibited higher antitumoral activity toward OVCAR, MCF-7 and leukemia K-562 cell lines, exhibiting GI50 values less than 10 µg/mL. Compound 11 displayed significant activity against PC-3 (GI50 = 4.31 µg/mL), OVCAR (GI50 = 8.84 µg/mL) and K-562 (GI50 = 8.80 µg/mL) cell lines. Galloyl hydrazide (2) had cytotoxic activity in HepG2/C3A cells (IC50 = 153.7 µg/mL). In membrane permeability, cell count, cell cycle, and apoptosis assays, as determined using the IC50 of compound (2) in HepG2/C3A cells, increased membrane permeability, decreased cell count, altered cell cycle, and initial apoptosis was observed compared to the control group. CONCLUSION: Thus, our results showed for the first time the synthesis, antiproliferative activity, and cytotoxicity of galloyl-substituted compounds. Galloyl-substitution does not have a very strong synergistic effect in the inhibition of cancer cell proliferation compared with galloyl hydrazide (2). Compound 2 demonstrated promising activity in HepG2/C3A hepatocarcinoma cells.


Assuntos
Antineoplásicos , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/farmacologia
18.
Chem Biol Interact ; 338: 109410, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582110

RESUMO

Curcumin (Cur), is a pigment with antiproliferative activity but has some pharmacokinetic limitations, which led researchers to look for more effective structure analogs. This work investigated the effects of Cur and compared them with the two analogs, demethoxycurcumin (DeMC) and dimethoxycurcumin (DiMC), to elucidate their mechanisms of action. The cytotoxic, antiproliferative, and genotoxic effects these compounds were correlated based on gene expression analysis in the human renal adenocarcinoma cells (786-O). Cur decreased CYP2D6 expression and exhibited cytotoxic effects, such as inducing monopolar spindle formation and mitotic arrest mediated by the increase in CDKN1A (p21) mRNA. This dysregulation induced cell death through a caspase-independent pathway but was mediated by decrease in MTOR and BCL2 mRNA expression, suggesting that apoptosis occurred by autophagy. DeMC and DiMC had similar effects in that they induced monopolar spindle and mitotic arrest, were genotoxic, and activated GADD45A, an important molecule in repair mechanisms, and CDKN1A. However, the induction of apoptosis by DeMC was delayed and regulated by the decrease of antiapoptotic mRNA BCL.XL and subsequent activation of caspase 9 and caspase 3/7. DiMC treatment increased the expression of CYP1A2, CYP2C19, and CYP3A4 and exhibited higher cytotoxicity compared with other compounds. It induced apoptosis by increasing mRNA expression of BBC3, MYC, and CASP7 and activation of caspase 9 and caspase 3/7. These data revealed that different gene regulation processes are involved in cell death induced by Cur, DeMC, and DiMC. All three can be considered as promising chemotherapy candidates, with DiMC showing the greatest potency.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Diarileptanoides/farmacologia , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Curcumina/química , Diarileptanoides/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
19.
Phytomedicine ; 80: 153373, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33096451

RESUMO

BACKGROUND: Hepatocellular Carcinoma (HCC) is extremely aggressive and presents low rates of response to the available chemotherapeutic agents. Many studies have focused on the search for alternative low-cost natural compounds with antiproliferative potential that selectively respond to liver cancer cells. PURPOSE: This study assessed the in vitro direct action of trans-chalcone (TC) on cells of the human HCC HuH7.5 cell line. METHODS: We subjected the HuH7.5 tumor cells to TC treatment at increasing concentrations (12.5-100 µM) for 24 and 48 h. Cell viability was verified through MTT and 50% inhibitory concentration of cells (IC50 23.66 µM) was determined within 48 h. We quantified trypan blue proliferation and light microscopy, ROS production, mitochondrial depolarization and autophagy, cell cycle analysis, and apoptosis using Muse® cell analyzer and immunocytochemical markings of p53 and ß-catenin. RESULTS: Data showed an effective dose- and time-dependent TC-cytotoxic action at low micromolar concentrations without causing toxicity to non-cancerous cells, such as erythrocytes. TC-treatment caused mitochondrial membrane damage and cell cycle G0/G1 phase arrest, increasing the presence of the p53 protein and decreasing ß-catenin, in addition, to inducing cell death by autophagy. Additionally, TC decreased the metastatic capacity of HuH7.5, which affected the migration/invasion of this type of cell. CONCLUSION: In vitro TC activity in the human HCC HuH7.5 tumor cell line is shown to be a potential molecule to develop new therapies to repair the p53 pathway and prevent the overexpression of Wnt/ß-catenin tumor development inducing autophagy cell death and decreasing metastatic capacity of HuH7.5 cell line.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Chalcona/farmacologia , Chalconas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regulação para Cima/efeitos dos fármacos
20.
Appl. cancer res ; 40: 1-13, Oct. 19, 2020. ilus
Artigo em Inglês | LILACS, Inca | ID: biblio-1283485

RESUMO

Background: Cell culture (spheroid and 2D monolayer cultures) is an essential tool in drug discovery. Piperlongumine (PLN), a naturally occurring alkaloid present in the long pepper (Piper longum), has been implicated in the regulation of GSTP1 activity. In vitro treatment of cancer cells with PLN increases ROS (reactive oxygen species) levels and induces cell death, but its molecular mode of action has not been entirely elucidated. Methods: In this study, we correlated the antiproliferative effects (2D and 3D cultures) of PLN (CAS 20069­09-4, Sigma-Aldrich) with morphological and molecular analyses in HepG2/C3A cell line. We performed assays for cytotoxicity (MTT), comet assays for genotoxicity, induction of apoptosis, analysis of the cell cycle phase, and analysis of the membrane integrity by flow cytometry. Relative expression of mRNA of genes related to proliferation, apoptosis, cell cycle control, metabolism of xenobiotics, and reticulum endoplasmic stress. Results: PLN reduced the cell proliferation by the cell cycle arrest in G2/M. Changes in the mRNA expression for CDKN1A (4.9x) and CCNA2 (0.5x) of cell cycle control genes were observed. Cell death occurred due to apoptosis, which may have been induced by increased expression of proapoptotic mRNAs (BAK1, 3.1x; BBC3, 2.4x), and by an increase in 9 and 3/7 active caspases. PLN induced cellular injury by ROS generation and DNA damage. DNA damage induced MDM2 signaling (3.0x) associated with the appearance of the monastral spindle in mitosis. Genes associated with ROS degradation also showed increased mRNA expression (GSR, 2.0x; SOD1, 2.1x). PLN induce endoplasmic reticulum stress with the increase in the mRNA expression of ERN1 (4.5x) and HSPA14 (2.2x). The xenobiotic metabolism showed increased mRNA expression for CYP1A2 (2.2x) and CYP3A4 (3.4x). In addition to 2D culture, PLN treatment also inhibited the growth of 3D culture (spheroids). Conclusion: Thus, the findings of our study show that several gene expression biomarkers (mRNAs) and monastral spindle formation indicated the many pathways of damage induced by PLN treatment that contributes to its antiproliferative effects


Assuntos
Humanos , RNA Mensageiro/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Dioxolanos/farmacologia , Antineoplásicos/farmacologia , Biomarcadores/análise , Expressão Gênica/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA