Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334660

RESUMO

Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells. Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated. This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis. The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels. These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.


Assuntos
Cannabis , Cisteína/análogos & derivados , Melanoma , Melanoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Morte Celular , Agonistas de Receptores de Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/uso terapêutico
2.
WIREs Mech Dis ; 16(1): e1633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37920964

RESUMO

Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.


Assuntos
Canabinoides , Melanoma , Humanos , Canabinoides/farmacologia , Melanoma/tratamento farmacológico , Estudos Prospectivos , Endocanabinoides/uso terapêutico , Pele/metabolismo
3.
Cells ; 12(20)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887294

RESUMO

Melanoma, an aggressive form of skin cancer, can be fatal if not diagnosed and treated early. Melanoma is widely recognized to resist advanced cancer treatments, including immune checkpoint inhibitors, kinase inhibitors, and chemotherapy. Numerous studies have shown that various Cannabis sativa extracts exhibit potential anticancer effects against different types of tumours both in vitro and in vivo. This study is the first to report that PHEC-66, a Cannabis sativa extract, displays antiproliferative effects against MM418-C1, MM329 and MM96L melanoma cells. Although these findings suggest that PHEC-66 has promising potential as a pharmacotherapeutic agent for melanoma treatment, further research is necessary to evaluate its safety, efficacy, and clinical applications.


Assuntos
Cannabis , Melanoma , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
Biomolecules ; 13(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892197

RESUMO

This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.


Assuntos
Antifúngicos , Bacillus subtilis , Antifúngicos/farmacologia , Antifúngicos/química , Lipopeptídeos , Antibacterianos , Antivirais
5.
Phytother Res ; 37(4): 1526-1538, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36748949

RESUMO

Medical cannabis has received significant interest in recent years due to its promising benefits in the management of pain, anxiety, depression and neurological and movement disorders. Specifically, the major phytocannabinoids derived from the cannabis plant such as (-) trans-Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), have been shown to be responsible for the pharmacological and therapeutic properties. Recently, these phytocannabinoids have also attracted special attention in cancer treatment due to their well-known palliative benefits in chemotherapy-induced nausea, vomiting, pain and loss of appetite along with their anticancer activities. Despite the enormous pharmacological benefits, the low aqueous solubility, high instability (susceptibility to extensive first pass metabolism) and poor systemic bioavailability restrict their utilization at clinical perspective. Therefore, drug delivery strategies based on nanotechnology are emerging to improve pharmacokinetic profile and bioavailability of cannabinoids as well as enhance their targeted delivery. Here, we critically review the nano-formulation systems engineered for overcoming the delivery limitations of native phytocannabinoids including polymeric and lipid-based nanoparticles (lipid nano capsules (LNCs), nanostructured lipid carriers (NLCs), nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS)), ethosomes and cyclodextrins as well as their therapeutic applications.


Assuntos
Canabidiol , Canabinoides , Humanos , Canabidiol/uso terapêutico , Dronabinol/farmacocinética , Dor/tratamento farmacológico , Lipídeos
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614303

RESUMO

Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.


Assuntos
Canabinoides , Cannabis , Melanoma , Humanos , Cannabis/química , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/química , Terpenos/farmacologia , Melanoma/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
7.
Cancers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439262

RESUMO

Prostate cancer is the second most frequently occurring cancer diagnosed among males. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation. In this review, we focused on studies that demonstrated anticancer effects of cannabinoids and their possible mechanisms of action in prostate cancer. Besides the palliative effects of cannabinoids, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of cancers. This analysis may provide pharmacological insights into the selection of specific cannabinoids for the development of antitumor drugs for the treatment of prostate cancer.

8.
Nutrients ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466262

RESUMO

Manuka honey and newly developed honeys (arjuna, guggul, jiaogulan and olive) were examined for their physicochemical, biochemical properties and effects on oxidative stress and cholesterol homeostasis in fatty acid-induced HepG2 cells. The honeys exhibited standard moisture content (<20%), electrical conductivity (<0.8 mS/cm), acidic pH, and monosaccharides (>60%), except olive honey (<60% total monosaccharides). They all expressed non-Newtonian behavior and 05 typical regions of the FTIR spectra as those of natural ones. Guggul and arjuna, manuka honeys showed the highest phenolic contents, correlating with their significant antioxidant activities. Arjuna, guggul and manuka honeys demonstrated the agreement of total cholesterol reduction and the transcriptional levels of AMPK, SREBP2, HCMGR, LDLR, LXRα. Jiaogulan honey showed the least antioxidant content and activity, but it was the most cytotoxic. Both jiaogulan and olive honeys modulated the tested gene in the pattern that should lead to a lower TC content, but this reduction did not occur after 24 h. All 2% concentrations of tested honeys elicited a clearer effect on NQO1 gene expression. In conclusion, the new honeys complied with international norms for natural honeys and we provide partial evidence for the protective effects of manuka, arjuna and guggul honeys amongst the tested ones on key biomarkers of oxidative stress and cholesterol homeostasis, pending further studies to better understand their modes of action.


Assuntos
Biomarcadores , Fenômenos Químicos , Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Mel/análise , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Análise Espectral
9.
Nutrients ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261004

RESUMO

Type 2 diabetes mellitus, which an outcome of impaired insulin action and its secretion, is concomitantly associated with lipid abnormalities. The study was designed to evaluate the combinational effect of omega-3 fatty acids (flax and fish oil) and glibenclamide on abnormal lipid profiles, increased blood glucose, and impaired liver and kidney functions in a high fat diet with low streptozotocin (STZ)-induced diabetic rats, including its probable mechanism of action. The male Wistar rats (n = 48) were distributed into eight groups. All animal groups except the healthy received a high fat diet (HFD) for 90 days. Further, diabetes was developed by low dose STZ (35 mg/kg). Diabetic animals received, omega-3 fatty acids (500 mg/kg), along with glibenclamide (0.25 mg/kg). Both flax and fish oil intervention decreased (p ≤ 0.001) serum triglycerides and very low density lipoprotein and elevated (p ≤ 0.001) high density lipoprotein levels in diabetic rats. Total cholesterol and low-density lipoprotein level was decreased (p ≤ 0.001) in fish oil-treated rats. However, it remained unaffected in the flax oil treatment group. Both flax and fish oil intervention downregulate the expression of fatty acid metabolism genes, transcription factors (sterol regulatory element-binding proteins-1c and nuclear factor-κß), and their regulatory genes i.e., acetyl-coA carboxylase alpha, fatty acid synthase, and tumor necrosis factors-α. The peroxisome proliferator-activated receptor gamma gene expression was upregulated (p ≤ 0.001) in the fish oil treatment group. Whereas, carnitine palmitoyltransferase 1 and fatty acid binding protein gene expression were upregulated (p ≤ 0.001) in both flax and fish oil intervention group.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glibureto/uso terapêutico , Lipídeos/sangue , Animais , Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/induzido quimicamente , Sinergismo Farmacológico , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química , Óleos de Peixe/farmacologia , Glibureto/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Óleo de Semente do Linho/farmacologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872551

RESUMO

Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66-69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.


Assuntos
Benzoxazinas/uso terapêutico , Canabinoides/uso terapêutico , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899626

RESUMO

Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it. Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs). Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects. PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation. The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Alimentos , Saúde , Humanos , Compostos Fitoquímicos/análise , Metabolismo Secundário
12.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839414

RESUMO

Melanoma is the fourth most common type of cancer diagnosed in Australians after breast, prostate, and colorectal cancers. While there has been substantial progress in the treatment of cancer in general, malignant melanoma, in particular, is resistant to existing medical therapies requiring an urgent need to develop effective treatments with lesser side effects. Several studies have shown that "cannabinoids", the major compounds of the Cannabis sativaL. plant, can reduce cell proliferation and induce apoptosis in melanoma cells. Despite prohibited use of Cannabis in most parts of the world, in recent years there have been renewed interests in exploiting the beneficial health effects of the Cannabis plant-derived compounds. Therefore, the aim of this study was in the first instance to review the evidence from in vivo studies on the effects of cannabinoids on melanoma. Systematic searches were carried out in PubMed, Embase, Scopus, and ProQuest Central databases for relevant articles published from inception. From a total of 622 potential studies, six in vivo studies assessing the use of cannabinoids for treatment of melanoma were deemed eligible for the final analysis. The findings revealed cannabinoids, individually or combined, reduced tumor growth and promoted apoptosis and autophagy in melanoma cells. Further preclinical and animal studies are required to determine the underlying mechanisms of cannabinoids-mediated inhibition of cancer-signaling pathways. Well-structured, randomized clinical studies on cannabinoid use in melanoma patients would also be required prior to cannabinoids becoming a viable and recognized therapeutic option for melanoma treatment in patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Canabinoides/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Melanoma Maligno Cutâneo
13.
Plant Physiol Biochem ; 148: 152-165, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962204

RESUMO

Dendrobium officinale is an economically important Chinese herb with ornamental and medicinal values. However, the mechanisms by which D. officinale adapts to cadmium (Cd) stress is unknown. Here, physiological changes in D. officinale roots and leaves exposed to increasing levels of Cd stress (CdSO4 concentration of 2, 5, 9, 14 mg L-1) were analyzed at 7, 15, 30, and 45 days after treatment. The Cd stress of 14 mg L-1 significantly increased the levels of antioxidants and induced malondialdehyde and proline accumulation (P < 0.05). Cd subcellular distribution showed that Cd sequestration into soluble fraction is the major detoxification mechanism in D. officinale roots. Subsequently, the transcriptome profile of D. officinale roots treated with 14 mg L-1 Cd for 15 and 30 days was analyzed. Compared to control, 2,469 differentially expressed genes (DEGs) were identified, comprising 1,486 up-regulated genes and 983 down-regulated genes. The DEGs associated with metabolic pathways for Cd uptake, transportation and detoxification were analyzed. Several processes such as metal transporter, sulfate glutathione metabolism, cell wall metabolism, phenylpropanoid metabolism were identified to be important for Cd stress adaptation. More genes were expressed at 15 days after treatment compared to 30 days. WRKY, Trihelix, NF-YC, MYB, bZIP and bHLH transcription factors were over-expressed at both time points. Furthermore, candidate genes from the glutathione metabolism pathway were identified, and qRT-PCR analysis of ten DEGs indicated a high coorelation with RNA-seq expression profiles. Our findings provide significant information for further research of Cd stress responsive genes functions in D. officinale, especially the genes from the glutathione metabolism pathway.


Assuntos
Cádmio , Dendrobium , Plântula , Estresse Fisiológico , Transcriptoma , Cádmio/toxicidade , Dendrobium/efeitos dos fármacos , Dendrobium/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
14.
Crit Rev Food Sci Nutr ; 60(11): 1869-1880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31032630

RESUMO

The health benefits of long-term dietary plant ingestion are well-established. However, literature on acute nutritional challenges is very limited. This study aimed to identify available evidence on transcriptomics responses to acute ingestion of plants or plant extracts and identify signature gene profiles that may serve as biomarkers of health status. We systematically searched electronic databases and extracted information based-on inclusion criteria such as human clinical studies, single plant-based nutrients and outcomes reported on acute transcriptome responses. A total of 11 studies reported on acute intake of plant dietary interventions. Four studies investigating natural oil extracts with three reporting on whole plants and two studies on natural plant-derived extracts. Gene expression was found to be associated with immune response (7 studies), inflammation (9 studies), metabolism (8 studies), cellular processes and cancer. The finding of this systematic review suggests that acute ingestion may significantly impact diverse physiological and pathological pathways including inflammatory, immune, cancer and oxidative stress pathways. Transcriptomics approach is proven to be an effective strategy in discovery of these anticipated mechanisms. Further studies are now required to validate and continue exploring the short-term health impact of dietary plants and their bioactive phytochemicals on gene expression and function.


Assuntos
Dieta , Nutrientes , Extratos Vegetais , Plantas Comestíveis , Transcriptoma , Humanos
15.
Plant Physiol Biochem ; 129: 295-304, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29913357

RESUMO

Chickpea (Cicer arietinum L.) is the second most important winter crop which is consumed globally due to its high nutritional value. Chickpea as one of the leguminous crop is important in crop rotation with cereal crops like wheat and barley. The main constraints for chickpea production are abiotic stresses such as drought, salinity, and heat. Among these, drought is a major cause of the decline in chickpea production in worldwide. Studies conducted so far have provided a limited insight into different genetic pathways associated with drought tolerance/response. In this study, the leaf tissue from shoots apical meristem stage of drought tolerant (ICC8261) and drought sensitive (ICC283) genotypes were analysed using RNA sequencing to identify genes/pathways associated with drought tolerance/sensitivity in both genotypes. It was observed that genes related to ethylene response, MYB-related protein, xyloglucan endotransglycosylase, alkane hydroxylase MAH-like, BON-1 associated, peroxidase 3, cysteine-rich and transmembrane domain, vignain and mitochondrial uncoupling were specifically up-regulated in the tolerant genotype whereas, same genes were down-regulated in sensitive genotype. The crosstalk between the different hormones and transcriptional factors involved in drought tolerance and sensitivity in both genotypes make them great candidates for future research.


Assuntos
Cicer/genética , Folhas de Planta/genética , RNA de Plantas/genética , Cicer/fisiologia , Desidratação , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genótipo , Oxirredução , Fotossíntese , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , RNA de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma
16.
Molecules ; 23(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304019

RESUMO

The antioxidant and antimicrobial components of honey vary based on sourced of nectar. Medicinal plants with the therapeutic value have potential to produce honey with greater bioactivity. The aim of the present study was to characterize the physico-chemical and antioxidant capacities of Agastache honey produced from Agastache rugosa and compare them with other popular commercial honeys sold in Australia. The total phenolics, total flavonoids, moisture content, colour, pH, protein content and antioxidant capacity were evaluated for Agastache, Manuka, Jelly bush, Tea tree, Super manuka and Jarrah honeys. The results reveal that the moisture content ranged from 17-21%, pH ranged from 3.8-4.3 and estimated protein content ranged from 900-2200 µg/g. The DPPH•, ABTS•+, ORAC and FRAP methods were used to measure the antioxidant capacity of the honey samples. The DPPH• % inhibition, ABTS•+, ORAC and FRAP values for Agastache honey were 9.85 (±1.98 µmol TE/g), 26.88 (±0.32 µmol TE/g), 19.78 (±1.1 µmol TE/g) and 3.61 (±0.02 µmol TE/g) whereas the highest antioxidant capacity values obtained were 18.69 (±0.9 µmol TE/g), 30.72 (±0.27 µmol TE/g), 26.95 (±0.9 µmol TE/g) and 3.68 (±0.04 µmol TE/g), respectively. There was a positive correlation between colour, total phenolic content and DPPH• scavenging activity for most of the honeys except Tea tree honey. However, there was no clear correlation with ABTS•+, ORAC and FRAP values. The measured antioxidant capacity of samples varied with the assays used. The DPPH• assay clearly indicated that the phenolic compounds contribute to the scavenging activity of the honeys. Nevertheless, all assays confirm that Agastache honey has significant antioxidant capacity. Therefore, Agastache honey can be important to human nutrition and health.


Assuntos
Agastache/química , Sequestradores de Radicais Livres/química , Mel/análise , Polifenóis/química , Austrália , Benzotiazóis/química , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/isolamento & purificação , Radicais Livres/química , Picratos/química , Polifenóis/isolamento & purificação , Ácidos Sulfônicos/química
17.
Int J Mol Sci ; 18(1)2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28085064

RESUMO

The study was designed to assess the effect of different strawberry extracts on glucose levels, lipid profiles, and oxidative stress in nicotinamide-streptozotocin (NIC-STZ) induced diabetic rats. The associated changes were evaluated through biochemical, molecular, and histological assays. Diabetes was induced by intraperitoneal injection of STZ to albino Wistar rats after treatment with nicotinamide. Aqueous, hydroalcoholic, and alcoholic strawberry extracts were administrated orally to diabetic rats. Treatment of strawberry extracts improved lipid profile, liver function, and serum creatinine and led to a significant increase in antioxidant status in diabetic rats. Real-time PCR expression analysis of genes from the liver of animals treated with strawberry extracts exhibited downregulation of several fatty acid synthesis genes, transcription factors, such as Sterol regulatory Element Binding Transcription factor (SREBP) and Nuclear Factor-κß (NF-κß), and inflammatory markers, like Interleukin 6 (IL6) and Tumor Necrosis Factor-α (TNF-α). Strawberry extracts also upregulated liver Peroxisome Proliferator Activated Receptor-γ (PPAR-γ). Histological examination confirmed the nephroprotective and ß-cell regeneration/protection effects of strawberry extracts. The present study demonstrates several beneficial effects of strawberry extracts along with its probable mechanism of action.


Assuntos
Fragaria/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/farmacologia , Biomarcadores , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental , Suplementos Nutricionais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Ratos
18.
Front Microbiol ; 7: 681, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242708

RESUMO

In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms.

19.
Food Sci Technol Int ; 21(5): 392-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24917651

RESUMO

The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures.


Assuntos
Bebidas/análise , Manipulação de Alimentos/métodos , Frutas/química , Temperatura Alta , Micro-Ondas , Morus/química , Antocianinas/química , Antioxidantes/química , Armazenamento de Alimentos , Polifenóis/química , Temperatura , Ultrassom
20.
BMC Complement Altern Med ; 14: 495, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25510964

RESUMO

BACKGROUND: The foraging choices of honey bees are influenced by many factors, such as floral aroma. The composition of volatile compounds influences the bioactivity of the aromatic plants and honey produced from them. In this study, Agastache rugosa was evaluated as part of a project to select the most promising medicinal plant species for production of bioactive honey. METHODS: Headspace solid-phase microextraction HS-SPME /GC-MS was optimized to identify the volatile bioactive compounds in the leaves, flower spikes, and for the first time, the flower nectar of Australian grown A. rugosa. RESULTS: Methyl chavicol (= estragole) was the predominant headspace volatile compound in the flowers with nectar, flower spikes, and leaves, with a total of 97.16%, 96.74% and 94.35%, respectively. Current results indicate that HS-SPME/GC-MS could be a useful tool for screening estragole concentration in herbal products. CONCLUSION: Recently, estragole was suspected to be carcinogenic and genotoxic, according to the European Union Committee on Herbal Medicinal Products. Further studies are needed on safe daily intake of Agastache as herbal tea or honey, as well as for topical uses.


Assuntos
Agastache/química , Anisóis/análise , Mel/análise , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Néctar de Plantas/química , Compostos Orgânicos Voláteis/análise , Agastache/efeitos adversos , Derivados de Alilbenzenos , Animais , Anisóis/efeitos adversos , Austrália , Abelhas , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mel/efeitos adversos , Humanos , Extratos Vegetais/efeitos adversos , Folhas de Planta/química , Plantas Medicinais/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA