Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7113, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402789

RESUMO

NRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Mutação , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Glicólise/genética , Glucose/metabolismo , Estresse Fisiológico , Fosfofrutoquinase-2/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163828

RESUMO

Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/genética , Osteoblastos/citologia , Monoéster Fosfórico Hidrolases/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucosefosfato Desidrogenase/genética , Células HCT116 , Células HeLa , Humanos , Camundongos , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/metabolismo , Osteoblastos/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas
3.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299056

RESUMO

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Concanavalina A/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Linfócitos/metabolismo , Mitógenos/farmacologia , Fosfatidilinositol 3-Quinases/química , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Apoptose , Proteínas Reguladoras de Apoptose/genética , Autofagia , Glicólise , Humanos , Linfócitos/efeitos dos fármacos , Via de Pentose Fosfato , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais
4.
Int Immunopharmacol ; 91: 107025, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360369

RESUMO

BACKGROUND: The ability of dendritic cells (DCs) to regulate adaptive immunity makes them interesting cells to be used as therapeutic targets modulating alloimmune responses. Mycophenolic acid (MPA) is an immunosuppressor commonly used in transplantation, and its effect on DCs has not been fully investigated. METHODS: Monocyte-derived DCs were obtained from healthy volunteers and cultured for 7 days. Cells were treated with MPA on day 2 and matured by lipopolysaccharide (LPS) stimulation. Functionality of mature DC (mDCs) was evaluated by allogeneic mixed lymphocytes reaction. Surface expression of maturation markers (CD40, CD83, CD86, and ICAM-1) was analyzed in both immature DCs (iDCs) and mDCs by flow cytometry. To assess transcriptional regulation and protein subcellular location, RT-PCR and confocal microscopy were used, respectively. RESULTS: MPA decreased surface expression of all maturation markers in mDCs and significantly abrogated DCs-induced allogeneic T-cell proliferation after MPA pre-treatment. In iDCs, the reduced surface protein expression after MPA paralleled with mRNA downregulation of their genes. In mDCs, the mRNA levels of ICAM-1, CD40 and CD83 were enhanced in MPA-treated mDCs with an increase in the expression of CD83 and ICAM-1 near the Golgi compared to non-treated mDCs. In contrast, mRNA levels of CD86 were diminished after MPA treatment. CONCLUSIONS: The reduced surface markers expression in mDCs exerted by MPA produced a decline in their capacity to activate immune responses. Moreover, the inhibition of guanosine-derived nucleotide biosynthesis by MPA treatment leads to DC maturation interference by two mechanisms depending on the marker, transcriptional downregulation or disrupted intracellular protein trafficking.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/efeitos dos fármacos , Imunossupressores/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Ácido Micofenólico/farmacologia , Transcrição Gênica/efeitos dos fármacos , Antígenos CD/genética , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Molécula 1 de Adesão Intercelular/genética , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fenótipo , Transporte Proteico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígeno CD83
5.
Gastroenterology ; 159(1): 273-288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169429

RESUMO

BACKGROUND & AIMS: We investigated mechanisms of hepatic stellate cell (HSC) activation, which contributes to liver fibrogenesis. We aimed to determine whether activated HSCs increase glycolysis, which is regulated by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and whether this pathway might serve as a therapeutic target. METHODS: We performed studies with primary mouse HSCs, human LX2 HSCs, human cirrhotic liver tissues, rats and mice with liver fibrosis (due to bile duct ligation [BDL] or administration of carbon tetrachloride), and CPEB4-knockout mice. Glycolysis was inhibited in cells and mice by administration of a small molecule antagonist of PFKFB3 (3-[3-pyridinyl]-1-[4-pyridinyl]-2-propen-1-one [3PO]). Cells were transfected with small interfering RNAs that knock down PFKFB3 or CPEB4. RESULTS: Up-regulation of PFKFB3 protein and increased glycolysis were early and sustained events during HSC activation and accompanied by increased expression of markers of fibrogenesis; incubation of HSCs with 3PO or knockdown of PFKFB3 reduced their activation and proliferation. Mice with liver fibrosis after BDL had increased hepatic PFKFB3; injection of 3PO immediately after the surgery prevented HSC activation and reduced the severity of liver fibrosis compared with mice given vehicle. Levels of PFKFB3 protein were increased in fibrotic liver tissues from patients compared with non-fibrotic liver. Up-regulation of PFKFB3 in activated HSCs did not occur via increased transcription, but instead via binding of CPEB4 to cytoplasmic polyadenylation elements within the 3'-untranslated regions of PFKFB3 messenger RNA. Knockdown of CPEB4 in LX2 HSCs prevented PFKFB3 overexpression and cell activation. Livers from CPEB4-knockout had decreased PFKFB3 and fibrosis after BDL or administration of carbon tetrachloride compared with wild-type mice. CONCLUSIONS: Fibrotic liver tissues from patients and rodents (mice and rats) have increased levels of PFKFB3 and glycolysis, which are essential for activation of HSCs. Increased expression of PFKFB3 is mediated by binding of CPEB4 to its untranslated messenger RNA. Inhibition or knockdown of CPEB4 or PFKFB3 prevents HSC activation and fibrogenesis in livers of mice.


Assuntos
Células Estreladas do Fígado/patologia , Cirrose Hepática Experimental/patologia , Cirrose Hepática/patologia , Fosfofrutoquinase-2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Fígado/citologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Masculino , Camundongos , Camundongos Knockout , Fosfofrutoquinase-2/genética , Cultura Primária de Células , Proteínas de Ligação a RNA/genética , Ratos , Regulação para Cima
6.
iScience ; 20: 434-448, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31627130

RESUMO

Cancer cells rely on mTORC1 activity to coordinate mitogenic signaling with nutrients availability for growth. Based on the metabolic function of E2F1, we hypothesize that glucose catabolism driven by E2F1 could participate on mTORC1 activation. Here, we demonstrate that glucose potentiates E2F1-induced mTORC1 activation by promoting mTORC1 translocation to lysosomes, a process that occurs independently of AMPK activation. We showed that E2F1 regulates glucose metabolism by increasing aerobic glycolysis and identified the PFKFB3 regulatory enzyme as an E2F1-regulated gene important for mTORC1 activation. Furthermore, PFKFB3 and PFK1 were found associated to lysosomes and we demonstrated that modulation of PFKFB3 activity, either by substrate accessibility or expression, regulates the translocation of mTORC1 to lysosomes by direct interaction with Rag B and subsequent mTORC1 activity. Our results support a model whereby a glycolytic metabolon containing phosphofructokinases transiently interacts with the lysosome acting as a sensor platform for glucose catabolism toward mTORC1 activity.

7.
Front Oncol ; 8: 331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30234009

RESUMO

For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.

8.
Expert Opin Ther Targets ; 22(8): 659-674, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985086

RESUMO

INTRODUCTION: It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Fosfofrutoquinase-2/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Proliferação de Células/fisiologia , Progressão da Doença , Desenvolvimento de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica , Glicólise/fisiologia , Humanos , Neoplasias/genética , Neoplasias/patologia , Fosfofrutoquinase-2/genética
9.
Mol Cell Biochem ; 448(1-2): 187-197, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29435871

RESUMO

Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phytohemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K-Akt pathway inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating both pathways to target complex diseases involving the activation of the immune system.


Assuntos
Regulação da Expressão Gênica/imunologia , Ativação Linfocitária , Fosfatidilinositol 3-Quinases/imunologia , Fosfofrutoquinase-2/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fito-Hemaglutininas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia
10.
FEBS J ; 284(20): 3437-3454, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834297

RESUMO

In human cancers, transforming growth factor-ß1 (TGF-ß1) plays a dual role by acting as both a tumor suppressor and a promoter of tumor metastasis. Although TGF-ß1 contributes to the metabolic reprogramming of cancer cells and tumor-associated stromal cells, little is known of the molecular mechanisms connecting this cytokine with enhanced glycolysis. PFKFB3 is a homodymeric bifunctional enzyme, belonging to the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases, that controls the conversion of fructose-6-phosphate (Fru-6-P) to fructose-2,6-bisphosphate (Fru-2,6-P2 ). This metabolite is important for the dynamic regulation of glycolytic flux by allosterically activating phosphofructokinase-1, a rate-limiting enzyme in glycolysis. The PFKFB3 gene is involved in cell proliferation via its role in carbohydrate metabolism. Here, we studied the mechanisms connecting TGF-ß1, glucose metabolism, and PFKFB3 in glioblastoma cell lines. We demonstrate that TGF-ß1 upregulates PFKFB3 mRNA and protein expression resulting in an increase in fructose 2,6-bisphosphate concentration, glucose uptake, glycolytic flux and lactate production. Moreover, these increases in PFKFB3 mRNA and protein expression and Fru-2,6-P2 concentration were reduced when the Smad3, p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways were inhibited. We demonstrate that inhibition of PFKFB3 activity with 3PO or siRNA-mediated knockdown of PFKFB3 significantly eliminated the capacity of the T98G cells to form colonies by TGF-ß1, one of the hallmarks of transformation. Taken together, these results show that TGF-ß1 induces PFKFB3 expression through activation of the p38 MAPK and PI3K/Akt signaling pathways that complement and converge with early activation of Smad signaling. This suggests that PFKFB3 induction by TGF-ß1 can be one of the main mechanisms mediating the reprogramming of glioma cells.


Assuntos
Glioblastoma/metabolismo , Glicólise/efeitos dos fármacos , Fosfofrutoquinase-2/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Smad/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Frutosedifosfatos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glucose/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Biol Chem ; 291(51): 26291-26303, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27803158

RESUMO

A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Técnicas de Cocultura , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Glutâmico/genética , Glicólise/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Células MCF-7 , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
FEBS Lett ; 590(17): 2915-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27491040

RESUMO

Neoplastic cells metabolize higher amounts of glucose relative to normal cells in order to cover increased energetic and anabolic needs. Inhibition of the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) diminishes cancer cell proliferation and tumour growth in animals. In this work, we investigate the crosstalk between PFKFB3 and TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator), a protein known to protect cells from oxidative stress. Our results show consistent TIGAR induction in HeLa cells in response to PFKFB3 knockdown. Upon PFKFB3 silencing, cells undergo oxidative stress and trigger Akt phosphorylation. This leads to induction of a TIGAR-mediated prosurvival pathway that reduces both oxidative stress and cell death. As TIGAR is known to have a role in DNA repair, it could serve as a potential target for the development of effective antineoplastic therapies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias/genética , Estresse Oxidativo/genética , Fosfofrutoquinase-2/biossíntese , Proteínas Reguladoras de Apoptose , Proliferação de Células/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/patologia , Fosfofrutoquinase-2/genética , Monoéster Fosfórico Hidrolases , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
13.
Am J Physiol Endocrinol Metab ; 310(6): E440-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26714846

RESUMO

Neuregulin (NRG) is an EGF-related growth factor that binds to the tyrosine kinase receptors ErbB3 and ErbB4, thus inducing tissue development and muscle glucose utilization during contraction. Here, we analyzed whether NRG has systemic effects regulating glycemia in control and type 2 diabetic rats. To this end, recombinant NRG (rNRG) was injected into Zucker diabetic fatty (ZDF) rats and their respective lean littermates 15 min before a glucose tolerance test (GTT) was performed. rNRG enhanced glucose tolerance without promoting the activation of the insulin receptor (IR) or insulin receptor substrates (IRS) in muscle and liver. However, in control rats, rNRG induced the phosphorylation of protein kinase B (PKB) and glycogen synthase kinase-3 (GSK-3) in liver but not in muscle. In liver, rNRG increased ErbB3 tyrosine phosphorylation and its binding to phosphatidylinositol 3-kinase (PI3K), thus indicating that rNRG activates the ErbB3/PI3K/PKB signaling pathway. rNRG increased glycogen content in liver but not in muscle. rNRG also increased the content of fructose-2,6-bisphosphate (Fru-2,6-P2), an activator of hepatic glycolysis, and lactate in liver but not in muscle. Increases in lactate were abrogated by wortmannin, a PI3K inhibitor, in incubated hepatocytes. The liver of ZDF rats showed a reduced content of ErbB3 receptors, entailing a minor stimulation of the rNRG-induced PKB/GSK-3 cascade and resulting in unaltered hepatic glycogen content. Nonetheless, rNRG increased hepatic Fru-2,6-P2 and augmented lactate both in liver and in plasma of diabetic rats. As a whole, rNRG improved response to the GTT in both control and diabetic rats by enhancing hepatic glucose utilization.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Neurregulinas/farmacologia , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Frutosedifosfatos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina , Proteínas Substratos do Receptor de Insulina/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Zucker , Receptor ErbB-3/efeitos dos fármacos , Receptor ErbB-3/metabolismo , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo
14.
Biochem J ; 452(3): 531-43, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548149

RESUMO

PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose 2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is involved in cell proliferation owing to its role in carbohydrate metabolism. In the present study we analysed the mechanism of regulation of PFKFB3 as an immediate early gene controlled by stress stimuli that activates the p38/MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2] pathway. We report that exposure of HeLa and T98G cells to different stress stimuli (NaCl, H2O2, UV radiation and anisomycin) leads to a rapid increase (15-30 min) in PFKFB3 mRNA levels. The use of specific inhibitors in combination with MK2-deficient cells implicate control by the protein kinase MK2. Transient transfection of HeLa cells with deleted gene promoter constructs allowed us to identify an SRE (serum-response element) to which SRF (serum-response factor) binds and thus transactivates PFKFB3 gene transcription. Direct binding of phospho-SRF to the SRE sequence (-918 nt) was confirmed by ChIP (chromatin immunoprecipiation) assays. Moreover, PFKFB3 isoenzyme phosphorylation at Ser461 by MK2 increases PFK-2 activity. Taken together, the results of the present study suggest a multimodal mechanism of stress stimuli affecting PFKFB3 transcriptional regulation and kinase activation by protein phosphorylation, resulting in an increase in Fru-2,6-P2 concentration and stimulation of glycolysis in cancer cells.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Fosfofrutoquinase-2/química , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Sequência de Aminoácidos , Ativação Enzimática/fisiologia , Glicólise/genética , Células HeLa , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Neoplasias/química , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
15.
Biochem J ; 442(2): 345-56, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115192

RESUMO

PFKFB (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose-2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is extensively involved in cell proliferation owing to its key role in carbohydrate metabolism. In the present study we analyse its mechanism of regulation by progestins in breast cancer cells. We report that exposure of T47D cells to synthetic progestins (ORG2058 or norgestrel) leads to a rapid increase in Fru-2,6-P2 concentration. Our Western blot results are compatible with a short-term activation due to PFKFB3 isoenzyme phosphorylation and a long-term sustained action due to increased PFKFB3 protein levels. Transient transfection of T47D cells with deleted gene promoter constructs allowed us to identify a PRE (progesterone-response element) to which PR (progesterone receptor) binds and thus transactivates PFKFB3 gene transcription. PR expression in the PR-negative cell line MDA-MB-231 induces endogenous PFKFB3 expression in response to norgestrel. Direct binding of PR to the PRE box (-3490 nt) was confirmed by ChIP (chromatin immunoprecipiation) experiments. A dual mechanism affecting PFKFB3 protein and gene regulation operates in order to assure glycolysis in breast cancer cells. An immediate early response through the ERK (extracellular-signal-regulated kinase)/RSK (ribosomal S6 kinase) pathway leading to phosphorylation of PFKFB3 on Ser461 is followed by activation of mRNA transcription via cis-acting sequences on the PFKFB3 promoter.


Assuntos
Neoplasias da Mama/metabolismo , Fosfofrutoquinase-2/metabolismo , Congêneres da Progesterona/farmacologia , Sequência de Bases , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , Norgestrel/farmacologia , Fosfofrutoquinase-2/genética , Pregnenodionas/farmacologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores de Progesterona/metabolismo
16.
Radiother Oncol ; 101(1): 132-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21864926

RESUMO

BACKGROUND AND PURPOSE: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower fructose-2,6-bisphosphate (Fru-2,6-P(2)) levels in cells, consequently decreasing glycolysis and leading to the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death. The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and T98G glioblastoma-derived cell lines. METHODS/RESULTS: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were assayed, showing an increase in Fru-2,6-P(2), lactate and ROS levels, with a concomitant decrease in reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in culture and the delay of DNA repair mechanisms, based in γ-H2AX foci, leading cells to undergo morphological changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility to consider TIGAR as a therapeutic target to increase radiotherapy effects. CONCLUSION: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Glioblastoma/radioterapia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Regulação para Baixo , Imunofluorescência , Glioblastoma/patologia , Glicólise/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Monoéster Fosfórico Hidrolases , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sensibilidade e Especificidade , Células Tumorais Cultivadas/metabolismo , Células Tumorais Cultivadas/efeitos da radiação , Proteína Supressora de Tumor p53/genética
17.
J Biol Chem ; 286(22): 19247-58, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21464136

RESUMO

Macrophages activated through Toll receptor triggering increase the expression of the A(2A) and A(2B) adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A(2A) and A(2B) receptors, we demonstrate that the A(2A) receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A(2B) receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A(2) receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages.


Assuntos
Adenosina/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/enzimologia , Fosfofrutoquinase-2/biossíntese , Receptor 4 Toll-Like/agonistas , Adenosina/genética , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Frutosedifosfatos/genética , Frutosedifosfatos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/biossíntese , Isoenzimas/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fosfofrutoquinase-2/genética , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina , Deleção de Sequência , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
Int J Parasitol ; 41(5): 553-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21215746

RESUMO

Trypanosoma cruzi infection produces an intense inflammatory response in diverse tissues including the heart. The inflammatory reaction is critical for the control of the parasites' proliferation and evolution of Chagas disease. 15-Deoxy-Δ(12,14) prostaglandin J(2) (15dPGJ2) can repress the inflammatory response in many experimental models. However, the precise role of peroxisome proliferator-activated receptor γ (PPARγ) ligands in T. cruzi infection or in Chagas disease is poorly understood. This work reports the first evidence that 15dPGJ2 treatment increases the number of intracellular parasites as shown by fluorescence microscopy and it is also able to inhibit the expression and activity of different inflammatory enzymes such as inducible nitric oxide synthase (NOS-2), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), as well as pro-inflammatory cytokine (TNF-α and IL-6) mRNA expression in neonatal mouse cardiomyocytes after T. cruzi infection. Transfection of cardiomyocytes with small interfering RNA (siRNA) induces silencing of PPARγ and impairs the effects of 15dPGJ2 on the modulation of pro-inflammatory enzymes. Moreover, transfection restores the ability of these cells to control the intracellular growth of T. cruzi. We also found that PPARγ-independent pathways are involved, since 15dPGJ2 also exerts its effect through extracellular signal-regulated kinases-mitogen-activated protein kinase (Erk-MAPK) and nuclear factor-κB (NF-κB). The use of specific pharmacological inhibitors confirmed these findings. Our data point out that 15dPGJ2 is a potent modulator of the inflammatory process and regulator of parasites growth through PPARγ-dependent and independent (Erk-MAPK- and NF-κB) pathways in T. cruzi infected neonatal cardiac cells.


Assuntos
Antineoplásicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Miócitos Cardíacos/imunologia , Prostaglandina D2/análogos & derivados , Trypanosoma cruzi/fisiologia , Animais , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/parasitologia , Citocinas/genética , Citocinas/imunologia , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Miócitos Cardíacos/parasitologia , PPAR gama/genética , PPAR gama/imunologia , Prostaglandina D2/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia
19.
Biochem Biophys Res Commun ; 367(4): 748-54, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18191036

RESUMO

The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P(2)), a signalling molecule that controls the balance between glycolysis and gluconeogenesis in several cell types. Four genes, designated Pfkfb1-4, code several PFK-2 isozymes that differ in their kinetic properties, molecular masses, and regulation by protein kinases. In rat tissues, Pfkfb3 gene accounts for eight splice variants and two of them, ubiquitous and inducible PFK-2 isozymes, have been extensively studied and related to cell proliferation and tumour metabolism. Here, we characterize a new kidney- and liver-specific Pfkfb3 isozyme, a product of the RB2K3 splice variant, and demonstrate that its expression, in primary cultured hepatocytes, depends on hepatic cell proliferation and dedifferentiation. In parallel, our results provide further evidence that ubiquitous PFK-2 is a crucial isozyme in supporting growing and proliferant cell metabolism.


Assuntos
Hepatócitos/citologia , Hepatócitos/enzimologia , Rim/citologia , Rim/enzimologia , Fosfofrutoquinase-2/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Isoenzimas/metabolismo , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
20.
Biochem Biophys Res Commun ; 365(2): 291-7, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17991424

RESUMO

Fructose 2,6-bisphosphate (Fru-2,6-P2) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P2 levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P2 levels in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain.


Assuntos
Fígado/fisiologia , Fosfofrutoquinase-2/metabolismo , Aumento de Peso/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA