Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Acta Neuropathol ; 143(6): 713-731, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522298

RESUMO

Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-ß pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.


Assuntos
Atrofia Muscular Espinal , Receptores Androgênicos , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Homeostase , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Receptores Androgênicos/genética , Proteína Smad4
3.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417184

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.


Assuntos
Atrofia Bulboespinal Ligada ao X , Receptores Androgênicos , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/terapia , Terapia Genética , Camundongos , Fenótipo , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
4.
Neural Regen Res ; 15(6): 988-995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31823868

RESUMO

Among collagen members in the collagen superfamily, type XIX collagen has raised increasing interest in relation to its structural and biological roles. Type XIX collagen is a Fibril-Associated Collagen with Interrupted Triple helices member, one main subclass of collagens in this superfamily. This collagen contains a triple helix composed of three polypeptide segments aligned in parallel and it is associated with the basement membrane zone in different tissues. The molecular structure of type XIX collagen consists of five collagenous domains, COL1 to COL5, interrupted by six non-collagenous domains, NC1 to NC6. The most relevant domain by which this collagen exerts its biological roles is NC1 domain that can be cleavage enzymatically to release matricryptins, exerting anti-tumor and anti-angiogenic effect in murine and human models of cancer. Under physiological conditions, type XIX collagen expression decreases after birth in different tissues although it is necessary to keep its basal levels, mainly in skeletal muscle and hippocampal and telencephalic interneurons in brain. Notwithstanding, in amyotrophic lateral sclerosis, altered transcript expression levels show a novel biological effect of this collagen beyond its structural role in basement membranes and its anti-tumor and anti-angiogenic properties. Type XIX collagen can exert a compensatory effect to ameliorate the disease progression under neurodegenerative conditions specific to amyotrophic lateral sclerosis in transgenic SOD1G93A mice and amyotrophic lateral sclerosis patients. This novel biological role highlights its nature as prognostic biomarker of disease progression in and as promising therapeutic target, paving the way to a more precise prognosis of amyotrophic lateral sclerosis.

5.
Hum Mol Genet ; 28(3): 396-406, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281092

RESUMO

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah-/-;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah-/-;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah-/-;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah-/-;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah-/-;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics.


Assuntos
Monofosfato de Citidina/genética , Distrofina/deficiência , Morfolinos/uso terapêutico , Animais , Cardiomiopatia Dilatada/genética , Carnitina O-Palmitoiltransferase/genética , Fator de Crescimento do Tecido Conjuntivo/análise , Monofosfato de Citidina/fisiologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Terapia Genética/métodos , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Oxigenases de Função Mista/metabolismo , Distrofia Muscular de Duchenne/genética , Miocárdio/metabolismo , NADPH Oxidase 4/análise , Oligonucleotídeos Antissenso/genética , Peptídeos/genética , Fenótipo , Volume Sistólico , Proteína Desacopladora 3/genética , Função Ventricular Direita
6.
Stem Cell Res Ther ; 9(1): 90, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625589

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. METHODS: SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. RESULTS: Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. CONCLUSIONS: This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Medula Óssea/métodos , Músculo Esquelético/citologia , Esclerose Lateral Amiotrófica/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Fatores de Crescimento Neural/metabolismo , Junção Neuromuscular/metabolismo , Superóxido Dismutase-1/genética
7.
Brain ; 140(4): 887-897, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334866

RESUMO

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Transporte Biológico , Proteína C9orf72 , Células COS , Linhagem Celular , Chlorocebus aethiops , Expansão das Repetições de DNA , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Íntrons , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Oligonucleotídeos Antissenso/farmacologia , Linhagem , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/patologia , Proteínas/genética , Proteínas rab de Ligação ao GTP , Proteínas rab1 de Ligação ao GTP/genética
8.
J Nutr Biochem ; 25(8): 885-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917047

RESUMO

Amyotrophic lateral sclerosis is a neurodegenerative disease associated with mutations in antioxidant enzyme Cu/Zn-superoxide dismutase 1. Albeit there is no treatment for this disease, new insights related to an exacerbated lipid metabolism have been reported. In connection with the hypermetabolic lipid status, the hypothesis whether nature of dietary fat might delay the progression of the disease was tested by using a transgenic mouse that overexpresses the human SOD1G93A variant. For this purpose, SOD1G93A mice were assigned randomly to one of the following three experimental groups: (1) a standard chow diet (control, n=21), (2) a chow diet enriched with 20% (w/w) extra virgin olive oil (EVOO, n=22) and (3) a chow diet containing 20% palm oil (palm, n=20). They received the diets for 8 weeks and the progression of the disease was assessed. On the standard chow diet, average plasma cholesterol levels were lower than those mice receiving the high-fat diets. Mice fed an EVOO diet showed a significant higher survival and better motor performance than control mice. EVOO group mice survived longer and showed better motor performance and larger muscle fiber area than animals receiving palm. Moreover, the EVOO-enriched diet improved the muscle status as shown by expression of myogenic factors (Myod1 and Myog) and autophagy markers (LC3 and Beclin1), as well as diminished endoplasmic reticulum (ER) stress through decreasing Atf6 and Grp78. Our results demonstrate that EVOO may be effective in increasing survival rate, improving motor coordination together with a potential amelioration of ER stress, autophagy and muscle damage.


Assuntos
Esclerose Lateral Amiotrófica/prevenção & controle , Autofagia/efeitos dos fármacos , Óleos de Plantas/farmacologia , Superóxido Dismutase/genética , Fator 6 Ativador da Transcrição/metabolismo , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Colesterol/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Azeite de Oliva , Óleo de Palmeira , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
9.
Int J Mol Sci ; 13(6): 6883-6901, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837670

RESUMO

When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.


Assuntos
Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Toxina Tetânica/metabolismo , Animais , Axônios/metabolismo , Clostridium tetani/metabolismo , Citosol/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios Motores/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
PLoS One ; 7(3): e32632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412900

RESUMO

The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A) mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A) mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A) mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Mutantes/genética , Superóxido Dismutase/genética , Animais , Biópsia , Denervação , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Longevidade/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Superóxido Dismutase-1 , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA