Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 119: 111166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588876

RESUMO

The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.


Assuntos
Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intercelular , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Doxorrubicina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
2.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614235

RESUMO

Given the high global prevalence and mortality associated with gastric cancer, and its known causal link with Helicobacter pylori infection, it is important to have a biomarker to identify malignant transformation at early stages. Previously, we, and others, have reported that H. pylori-induced epigenetic changes could mediate carcinogenic transformation of the gastric cells. Also, CXCL1 secreted by gastric cancer cells was reported as a key diagnostic and prognostic biomarker for the pathogenic progression of gastric cancer. In this study, for the first time, we aimed to investigate the role of H. pylori-induced DNA methylation-based epigenetic regulation of CXCL1. In silico analysis of publicly available datasets and in vitro experiments were performed. Our results showed that CXCL1 is highly expressed in both gastric cancer tissues and gastric cancer cells infected with H. pylori. Further, we showed and confirmed that H. pylori-mediated overexpression of CXCL1 is due to hypomethylation of its promoter region. Since epigenetic events such as DNA methylation happen early in the sequence; H. pylori-induced CXCL1 hypomethylation could likely be detected at an early stage of gastric cancer development. Epigenetic modifications, such as CXCL1 hypomethylation, are reversible and could potentially be a therapeutic target using demethylation drugs.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Metilação de DNA , Neoplasias Gástricas/patologia , Helicobacter pylori/genética , Epigênese Genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Mucosa Gástrica/metabolismo , Regiões Promotoras Genéticas , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Biomarcadores/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo
3.
Front Oncol ; 12: 924290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912261

RESUMO

Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.

4.
Neoplasia ; 24(2): 76-85, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952246

RESUMO

Colorectal Cancer (CRC) with Microsatellite instability (MSI) and mutLhomolog-1 (MLH1) gene deficiency are less aggressive than MLH1 proficient cancers. MLH1 is involved in several cellular processes, but its connection with the autophagy-dependent cellular response towards anticancer drugs remains unclear. In this study, we aimed to investigate the interaction between MLH1 and the autophagy marker LC3, which facilitated nucleophagy induction, and its potential role in determining sensitivity to 5-Fluorouracil (5-FU) induced cell death. To examine the role of MLH1 in DNA-damage-induced nucleophagy in CRC cells, we utilized a panel of MLH1 deficient and MLH1 proficient CRC cell lines. We included a parental HCT116 cell line (MLH1-/-) and its isogenic cell line HCT116 MLH1+/- in which a single allele of the MLH1 gene was introduced using CRISPR-Cas9 gene editing. We observed that MLH1 proficient cells were less sensitive to the 5-FU-induced cytotoxic effect. The 5-FU induced DNA damage led to LC3 up-regulation, which was dependent on MLH1 overexpression. Moreover, immunofluorescence and immunoprecipitation data showed LC3 and MLH1 were colocalized in CRC cells. Consequently, MLH1 dependent 5-FU-induced DNA damage contributed to the formation of micronuclei. These micronuclei colocalize with autolysosome, indicating a cytoprotective role of MLH1 dependent nucleophagy. Interestingly, siRNA knockdown of MLH1 in HCT116 MLH1+/- prevented LC3 upregulation and micronuclei formation. These novel data are the first to show an essential role of MLH1 in mediating the chemoresistance and survival of cancer cells by increasing the LC3 expression and inducing nucleophagy in 5-FU treated CRC cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias Colorretais/genética , Citoproteção/genética , Fluoruracila/farmacologia , Proteína 1 Homóloga a MutL/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos
5.
Histol Histopathol ; 34(1): 47-56, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29989143

RESUMO

BACKGROUND: Wilms' tumor treatment has achieved great success in the last decade. Nevertheless, some cases still fail to respond to the current multimodality therapy. These cases fall mainly in the unfavorable histology group with very few belonging to the favorable histology group. In recent years, autophagy manipulation whether inhibition or stimulation has been shown to affect cancer cell behavior and has emerged as a novel mechanism to improve cancer cell response to currently used therapeutic regimens. OBJECTIVE: The current study aimed to investigate the expression of autophagy related markers (ATG4B and Beclin1) in WT, its association with the different clinic-pathological parameters and its impact on patient survival. METHODS: Twenty-one formalin fixed paraffin embedded (FFPE) WT specimens were immunohistochemically stained using autophagy related markers; Beclin-1 and ATG4B. All clinical, radiological and follow up data were retrieved from the patient records. RESULTS: All specimens showed positive expression of both Beclin-1 and ATG4B. The staining score for Beclin1 varied between 50 and 300, and its expression was significantly associated with favorable histology (p=0.007). Similarly, ATG4B expression was significantly higher in favorable histology tumors compared to unfavorable histology (p=0.046). A statistically significant positive correlation between Beclin-1 and ATG4B expression was observed. The cumulative disease-free survival in patients with favorable histology was significantly higher compared to patients with unfavorable histology (p=0.0027). CONCLUSIONS: Beclin-1 and ATG4B expression were both found to be statistically significant discriminators of survival. Collectively these findings suggest that the expression of autophagy-related markers is associated with a favorable histology and could predict better survival in these patients.


Assuntos
Proteínas Relacionadas à Autofagia/biossíntese , Proteína Beclina-1/biossíntese , Biomarcadores Tumorais/análise , Cisteína Endopeptidases/biossíntese , Neoplasias Renais/patologia , Tumor de Wilms/patologia , Autofagia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Neoplasias Renais/mortalidade , Masculino , Prognóstico , Estudos Retrospectivos , Tumor de Wilms/mortalidade
6.
Diabetes Res Clin Pract ; 139: 272-277, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29534995

RESUMO

BACKGROUND: Statin-induced myopathy has been linked to the C allele of a single nucleotide polymorphism (SNP) (rs4149056) of SLCO1B1 gene. This effect is more significant, but not restricted to simvastatin. Many studies have included European, American, African and Southeast Asian ancestries, but few were carried out on Middle Eastern population. AIM: To detect the prevalence of SLCO1B1 rs4149056 (521T > C) in Emirati population. METHOD: We recruited 282 Emiratis through the UAE National Diabetes and Lifestyle Project. Ethical approval was obtained before the study starts. Besides basic data collection, venous blood samples were collected. Fasting blood glucose, Lipid profile, and insulin levels were measured. Genotyping for rs4149056 (521T > C) was tested in triplicates through Real Time-PCR using TaqMan® Drug Metabolism Genotyping Assay. rs2306283 (388A > G) was analyzed for comparison. In addition, presence of minor alleles of both SNPs define stronger association with statin-induced myopathy. RESULTS: The study included 282 individuals, 52.8% were males with median age of 39.5 years. 10% had Diabetes Mellitus and 23% were hypertensive. Median of body mass index (BMI) was 27.68 kg/m2 in males and 28.38 kg/m2 in females. One-hundred ninety-seven (69.9%) showed abnormal lipid profile (either increased LDL-cholesterol or triglycerides or both). For rs4149056, C allele was present in 21.3% (2.8% homozygous C and 18.4% heterozygous CT). Although homozygous C genotype prevalence was low, compared with Caucasians (4%) and Africans (0%), C allele was associated with a trend of having higher BMI and abnormal lipid profile. C allele subjects were all pre-diabetics with mean glycated hemoglobin above 6%. Mean BMI in CC, CT, and TT genotypes was 30.91 ±â€¯4.4, 29.48 ±â€¯4.2, 27.96 ±â€¯5.5 kg/m2 respectively, with lack of such a trend observed with the different genotypes of the rs2306283 (used for comparison). Abnormal lipid profile was observed in 7/8(87.5%), 38/52(73.1%) and 152/222(70%) of the CC, CT, and TT genotypes respectively. CONCLUSION: There is lower prevalence of statin-induced myopathy-linked C allele of rs4149056 in SLCO1B1 gene in Emirati population, compared to Caucasians and Africans. However, there is a trend of higher glycosylated hemoglobin and BMI associated with normal lipid profile in patients having this allele.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Doenças Musculares/epidemiologia , Estado Pré-Diabético/epidemiologia , Adulto , Índice de Massa Corporal , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Masculino , Pessoa de Meia-Idade , Doenças Musculares/sangue , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Polimorfismo de Nucleotídeo Único , Estado Pré-Diabético/sangue , Estado Pré-Diabético/induzido quimicamente , Estado Pré-Diabético/genética , Prevalência , Emirados Árabes Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA