Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Commun ; 15(1): 4943, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858372

RESUMO

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O2-•). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O2 to O2-• by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.


Assuntos
Benzoquinonas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Staphylococcus aureus , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Animais , Camundongos , Feminino , Fotoquimioterapia/métodos , Transporte de Elétrons/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química , Antibacterianos/farmacologia , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Luz , Camundongos Endogâmicos BALB C
2.
Nano Lett ; 24(11): 3386-3394, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452250

RESUMO

Utilizing one molecule to realize combinational photodynamic and photothermal therapy upon single-wavelength laser excitation, which relies on a multifunctional phototherapy agent, is one of the most cutting-edge research directions in tumor therapy owing to the high efficacy achieved over a short course of treatment. Herein, a simple strategy of "suitable isolation side chains" is proposed to collectively improve the fluorescence intensity, reactive oxygen species production, photothermal conversion efficiency, and biodegradation capacity. Both in vitro and in vivo results reveal the practical value and huge potential of the designed biodegradable conjugated polymer PTD-C16 with suitable isolation side chains in fluorescence image-guided combinational photodynamic and photothermal therapy. These improvements are achieved through manipulation of aggregated states by only side chain modification without changing any conjugated structure, providing new insight into the design of biodegradable high-performance phototherapy agents.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros/química , Fototerapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
3.
Nat Prod Res ; : 1-5, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501743

RESUMO

Two new megastigmane glycosides, (6 R,7E,9R)-3-oxo-α-ionyl-9-O-α-L-rhamnopyranosyl-(1''→4')-ß-D-glucopyranoside (1) and (6 R,7E,9R)-3-oxo-α-ionyl-9-O-ß-D-glucopyranosyl-(1''→6')-ß-D-glucopyranoside (2), together with six known analogues (3-8) were isolated from the leaves of Nicotiana tabacum. The structures of all metabolites were determined by comprehensive analysis of NMR and MS spectroscopic data as well as by comparison with those of previously reported. The in vitro anti-inflammatory activity of all isolates was evaluated using a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model, and the compounds 1, 3, 7, and 8 exhibited inhibition of LPS-induced NO production in RAW264.7 macrophage cells with IC50 values of 42.3-61.7 µM (positive control, dexamethasone, IC50 = 21.3 ± 1.2 µM).

4.
ACS Nano ; 17(11): 10365-10375, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235750

RESUMO

Traditional antibacterial procedures are getting inefficient due to the emergence of antimicrobial resistance, which makes alternative treatments in urgent demand. However, the selectivity toward infectious bacteria is still challenging. Herein, by taking advantage of the self-directed capture of infectious bacteria by macrophages, we developed a strategy to realize precise in vivo antibacterial photodynamic therapy (APDT) through adoptive photosensitizer-loaded macrophage transfer. TTD with strong reactive oxygen species (ROS) production and bright fluorescence was first synthesized and was subsequently formulated into TTD nanoparticles for lysosome targeting. TTD-loaded macrophages (TLMs) were constructed by direct incubation of TTD nanoparticles with macrophages, in which the TTD was localized in the lysosomes to meet the captured bacteria in the phagolysosomes. The TLMs could precisely capture and eradicate bacteria while being activated toward the proinflammatory and antibacterial M1 phenotype upon light illumination. More importantly, after subcutaneous injection, TLMs could effectively inhibit bacteria in the infected tissue through APDT, leading to good tissue recovery from severe bacterial infection. Overall, the engineered cell-based therapeutic approach shows great potential in the treatment of severe bacterial infectious diseases.


Assuntos
Infecções Bacterianas , Nanopartículas , Fotoquimioterapia , Humanos , Infecções Bacterianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antibacterianos/uso terapêutico , Macrófagos , Bactérias
5.
Small Methods ; 7(5): e2201614, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960933

RESUMO

In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.


Assuntos
Ferroptose , Morte Celular Regulada , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Imunoterapia , Morte Celular
6.
ACS Appl Mater Interfaces ; 14(33): 37514-37527, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35944246

RESUMO

CAR-T-cell therapies must be expanded to obtain a large number of effector cells quickly, and the current technology cannot address this challenge. A longer operational time would lose or alter the function and phenotype of CAR-T cells in response to therapy, and it also causes a loss in the optimal treatment time for patients. At present, lower survival time and homing efficiency reduce the antitumor effect of CAR-T in vivo. But nobody has solved these two issues in one system, which has a similar microenvironment of lymphoid organs to activate/expand cell delivery for immunotherapy. Here, we generated artificial, customized immune cell matrix scaffolds based on a self-assembling peptide to preserve and augment the cell phenotype in light of the characteristics of CAR-T. The all-in-one nanoscale matrix scaffolds reduced the processing time of CAR-T to 3 days and resulted in over a 10-fold increase compared with the traditional protocol. The cells were combined to modulate mechanotransduction and chemical signals, and the mimic matrix scaffolds showed optimal stiffness and adhesive ligand density, thereby accelerating CAR-T-cell proliferation. Meanwhile, engineering CAR-T-secreted intrinsic PD-1 blocking single-chain variable fragments (scFv) further increased cell proliferation and cytotoxicity by resisting the self and tumor microenvironment in a paracrine and autocrine manner. Local delivery of CAR-T cells from the scaffolds significantly enabled long-term retention, suppressed tumor growth, and increased infiltration of effector T cells compared with traditional CAR-T treatment. The application of bioengineering and genetic engineering approaches has led to the development of rapid culture environments that can control matrix scaffold properties for CAR-T-cell and cancer immunotherapies.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Linhagem Celular Tumoral , Proliferação de Células , Hidrogéis , Imunoterapia , Mecanotransdução Celular , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Angew Chem Int Ed Engl ; 61(15): e202114600, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132748

RESUMO

The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Pontos de Checagem do Ciclo Celular , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
8.
Sci Adv ; 6(26): eabb2712, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637621

RESUMO

Reactive oxygen species (ROS) are essential for the regulation of antitumor immune responses, where they could induce immunogenic cell death, promote antigen presentation, and activate immune cells. Here, we report the development of near-infrared (NIR)-driven immunostimulants, based on coupling upconversion nanoparticles with aggregation-induced emission luminogens (AIEgens), to integrate the immunological effects of ROS for enhanced adaptive antitumor immune responses. Intratumorally injected AIEgen-upconversion nanoparticles produce high-dose ROS under high-power NIR irradiation, which induces immunogenic cell death and antigen release. These nanoparticles can also capture the released antigens and deliver them to lymph nodes. Upon subsequent low-power NIR treatment of lymph nodes, low-dose ROS are generated to further trigger efficient T cell immune responses through activation of dendritic cells, preventing both local tumor recurrence and distant tumor growth. The utility of dual-mode pumping power on AIEgen-coupled upconversion nanoparticles offers a powerful and controllable platform to activate adaptive immune systems for tumor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
9.
Anal Chem ; 91(10): 6836-6843, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31009572

RESUMO

Tumor-associated macrophages (TAMs) that exist in tumor microenvironment promote tumor progression and have been suggested as a promising therapeutic target for cancer therapy in preclinical studies. Development of theranostic systems capable of specific targeting, imaging, and ablation of TAMs will offer clinical benefits. Here we constructed a theranostic probe, namely, TPE-Man, by attaching mannose moieties to a red-emissive and AIE (aggregation-induced emission)-active photosensitizer. TPE-Man can specifically recognize a mannose receptor that is overexpressed on TAMs by the sugar-receptor interaction and enables fluorescent visualization of the mannose-receptor-positive TAMs in high contrast. The histologic study of mouse tumor sections further verifies TPE-Man's excellent targeting specificity being comparable with the commercial mannose-receptor antibody. TAMs can be effectively eradicated upon exposure to white light irradiation via a photodynamic therapy effect. To our knowledge, this is the first small molecular theranostic probe for TAMs that revealed combined advantages of low cost, high targeting specificity, fluorescent light-up imaging, and efficient photodynamic ablation.


Assuntos
Compostos de Benzilideno/farmacologia , Macrófagos/efeitos dos fármacos , Manosídeos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/efeitos da radiação , Compostos de Benzilideno/toxicidade , Manosídeos/síntese química , Manosídeos/efeitos da radiação , Manosídeos/toxicidade , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Ratos Sprague-Dawley , Nanomedicina Teranóstica/métodos
10.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823375

RESUMO

The Chrysanthemum morifolium flower is widely used in China and Japan as a food, beverage, and medicine for many diseases. In our work, two new caffeoylquinic acid derivatives (1, 2), a new flavanone glycoside (3), and six reported flavanones (4⁻9) were isolated and identified from the flowers of C. morifolium. The chemical structures of all isolates were elucidated by the analysis of comprehensive spectroscopic data as well as by comparison with previously reported data. The isolated constituents 1⁻8 were evaluated for their neuroprotective activity, and compounds 3 and 4 displayed neuroprotective effects against hydrogen peroxide-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.


Assuntos
Chrysanthemum/química , Flavanonas , Flores/classificação , Glicosídeos , Fármacos Neuroprotetores , Ácido Quínico/análogos & derivados , Flavanonas/química , Flavanonas/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Células Hep G2 , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ácido Quínico/química , Ácido Quínico/farmacologia
11.
Nano Lett ; 19(3): 1560-1569, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30789273

RESUMO

Bioactive peptides derived from proteins generally need to be folded into secondary structures to activate downstream signaling pathways. However, synthetic peptides typically form random-coils, thus losing their bioactivities. Here, we show that by introducing a self-assembling peptide motif and using different preparation pathways, a peptide from insulin-like growth factor-I (IGF-1) can be folded into an α-helix and ß-sheet. The ß-sheet one exhibits a low dissociation constant to the IGF-1 receptor (IGF-1R, 11.5 nM), which is only about 3 times higher than that of IGF-1 (4.3 nM). However, the α-helical one and the peptide without self-assembling motif show weak affinities to IGF-1R ( KD = 179.1 and 321.6 nM, respectively). At 10 nM, the ß-sheet one efficiently activates the IGF-1 downstream pathway, significantly enhancing HUVEC proliferation and preventing cell apoptosis. The ß-sheet peptide shows superior performance to IGF-1 in vivo, and it improves ischemic hind-limb salvage by significantly reducing muscle degradation and enhancing limb vascularization. Our study provides a useful strategy to constrain peptides into different conformations, which may lead to the development of supramolecular nanomaterials mimicking biofunctional proteins.


Assuntos
Fator de Crescimento Insulin-Like I/química , Nanofibras/química , Peptídeos/química , Receptor IGF Tipo 1/química , Apoptose/genética , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanoestruturas/química , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Transdução de Sinais/genética
12.
Biomaterials ; 188: 107-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342204

RESUMO

Ionizing radiation-induced skin injury is a common and severe side effect of radiotherapy suffered by cancer patients. Although the therapy using stem cells has been demonstrated to be effective, fully grasping their role in the repair of radiation-induced skin damage remains challenging owing to the lack of highly reliable cell trackers. Herein, we report the design and synthesis of a highly near-infrared emissive organic nanodots with aggregation-induced emission (AIE) characteristic, which give excellent performance in seeing the fate and regenerative mechanism of adipose-derived stem cells (ADSCs) in treatment of radiation-induced skin injury. The resultant AIE dots show a rather high quantum yield of 33% in aqueous media, prominent retention ability in ADSCs without leakage, good biocompatibility during the ADSC differentiation and proliferation as well as excellent injury relief capability on radiation-induced endothelial cells injury. In vivo studies reveal that the AIE dots are capable of serving as an effective fluorescent cell tracker to precisely trace the behavior of the transplanted ADSCs in radiation-induced skin injury-bearing mice and help to understand the ADSCs therapeutic mechanism for at least one month. This study will provide new materials and insights into the stem cell therapy of radiation-induced injury.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/análise , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Imagem Óptica/métodos , Lesões Experimentais por Radiação/terapia , Animais , Células Cultivadas , Feminino , Raios Infravermelhos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Lesões Experimentais por Radiação/patologia , Pele/lesões , Pele/patologia
13.
Angew Chem Int Ed Engl ; 57(50): 16396-16400, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30341792

RESUMO

Liposomes have been used as popular drug delivery systems for cancer therapy. However, it is difficult to track traditional liposome delivery systems in an efficient and stable fashion to assess their delivery efficacy and biodistribution after administration. Meanwhile, conventional fluorescent liposomes containing optical tracers face the challenge of aggregation-caused quenching. Herein, we report a strategy for the integration of an aggregation-induced emission fluorogen with a liposome to yield an AIEgen-lipid conjugate, termed "AIEsome". The AIEsome exhibits bright red fluorescence along with great photostability and biocompatibility, and can be used for in vitro cancer cell labeling and in vivo tumor targeting. Meanwhile, benefiting from the excellent photosensitizing ability of the AIEgen and its good oxygen exposure in aqueous media, the AIEsome also performs well in efficient photodynamic therapy (PDT) for both in vitro cancer cell ablation and in vivo antitumor therapy after white light illumination.


Assuntos
Corantes Fluorescentes/administração & dosagem , Lipídeos/química , Lipossomos/química , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/uso terapêutico , Camundongos , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Distribuição Tecidual
14.
Small ; 14(42): e1800652, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247812

RESUMO

Progress in photoacoustic (PA) and magnetic resonance imaging (MRI) bimodal contrast agents has been achieved mainly by utilizing the imaging capability of single or multiple components and consequently realizing the desired application for both imaging modalities. However, the mechanism of the mutual influence between components within a single nanoformulation, which is the key to developing high-performance multimodal contrast agents, has yet to be fully understood. Herein, by integrating conjugated polymers (CPs) with iron oxide (IO) nanoparticles using an amphiphilic polymer, a bimodal contrast agent named CP-IO is developed, displaying 45% amplified PA signal intensity as compared to bare CP nanoparticle, while the performance of MRI is not affected. Further experimental and theoretical simulation results reveal that the addition of IO nanoparticles in CP-IO nanocomposites contributes to this PA signal amplification through a synergistic effect of additional heat generation and faster heat dissipation. Besides, the feasibility of CP-IO nanocomposites acting as PA-MRI bimodal contrast agents is validated through in vivo tumor imaging using mice models. From this study, it is demonstrated that a delicately designed structural arrangement of various components in a contrast agent could potentially lead to a superior performance in the imaging capability.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Técnicas Fotoacústicas/métodos , Animais , Linhagem Celular Tumoral , Análise de Elementos Finitos , Camundongos , Nanocompostos/química , Nanopartículas/química , Polímeros/química
15.
Angew Chem Int Ed Engl ; 57(32): 10182-10186, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29959849

RESUMO

Bio-orthogonal tumor labeling is more effective in delivering imaging agents or drugs to a tumor site than active targeting strategy owing to covalent ligation. However, to date, tumor-specific imaging through bio-orthogonal labeling largely relies on body clearance to differentiate target from the intrinsic probe signal owing to the lack of light-up probes for in vivo bio-orthogonal labeling. Now the first light-up probe based on a fluorogen with aggregation-induced emission for in vivo bio-orthogonal fluorescence turn-on tumor labeling is presented. The probe has low background fluorescence in aqueous media, showing negligible non-specific interaction with normal tissues. Once it reacts with azide groups introduced to tumor cells through metabolic engineering, the probe fluorescence is lightened up very quickly, enabling rapid tumor-specific imaging. The photosensitizing ability was also used to realize effective image-guided photodynamic tumor therapy.


Assuntos
Corantes Fluorescentes/química , Luz , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Camundongos , Estrutura Molecular
16.
Anal Chem ; 90(11): 6718-6724, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29708328

RESUMO

Metabolic glycoengineering of unnatural glycans with bio-orthogonal chemical groups and a subsequent click reaction with fluorescent probes have been widely used in monitoring various bioprocesses. Herein, we developed a dual-responsive metabolic precursor that could specifically generate unnatural glycans with azide groups on the membrane of targeted cancer cells with high selectivity. Moreover, a water-soluble fluorescent light-up probe with aggregation-induced emission (AIE) was synthesized, which turned its fluorescence on upon a click reaction with azide groups on the cancer cell surface, enabling special cancer cell imaging with low background signal. Furthermore, the probe can generate 1O2 upon light irradiation, fulfilling its dual role as an imaging and therapeutic agent for cancer cells. Therefore, the concepts of the cancer-cell-specific metabolic precursor cRGD-S-Ac3ManNAz and the AIE light-up probe are promising in bio-orthogonal labeling and cancer-specific imaging and therapy.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Luz , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Estrutura Molecular , Solubilidade , Água/química
17.
Nanoscale ; 10(13): 5869-5874, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29560485

RESUMO

Polymeric nanorods loaded with AIEgens are synthesized via nano-precipitation under ultrasound sonication, where prolonged sonication time could induce a nanodot-to-nanorod transition. These AIE nanorods, but not the nanodots, could be selectively internalized into cancer cells, which show better tumor accumulation, higher tumor penetration and more efficient in vivo cancer cell uptake.


Assuntos
Corantes Fluorescentes , Nanotubos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Polímeros
18.
ACS Appl Mater Interfaces ; 10(5): 4481-4493, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327586

RESUMO

Stem cell treatment for critical limb ischemia yields a limited therapeutic effect due to cell loss and dysfunction caused by local ischemic environment. Biomimetic scaffolds emerge as ideal cell delivery vehicles for regulating cell fate via mimicking the components of stem cell niche. Herein, we prepared a bioactive hydrogel by mixing chitosan and hyaluronic acid that is immobilized with C domain peptide of insulin-like growth factor 1 (IGF-1C) and examined whether this hydrogel could augment stem cell survival and therapeutic potential. Our results showed that IGF-1C-modified hydrogel increased in vitro viability and proangiogenic activity of adipose-derived stromal cells (ADSCs). Moreover, cotransplantation of hydrogel and ADSCs into ischemic hind limbs of mice effectively ameliorated blood perfusion and muscle regeneration, leading to superior limb salvage. These therapeutic effects can be ascribed to improved ADSC retention, angiopoientin-1 secretion, and neovascularization, as well as reduced inflammatory cell infiltration. Additionally, hydrogel enhanced antifibrotic activity of ADSCs, as evidenced by decreased collagen accumulation at late stage. Together, our findings indicate that composite hydrogel modified by IGF-1C could promote survival and proangiogenic capacity of ADSCs and thereby represents a feasible option for cell-based treatment for critical limb ischemia.


Assuntos
Transplante de Células-Tronco , Tecido Adiposo , Animais , Células Cultivadas , Extremidades , Hidrogéis , Isquemia , Camundongos , Neovascularização Fisiológica
19.
Adv Sci (Weinh) ; 4(9): 1600407, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932655

RESUMO

Fluorescent and biocompatible organic nanoparticles have attracted great interest in cancer detection and imaging, but the nonspecific cellular uptake has limited the detection specificity and sensitivity. Herein, the authors report the ultrasmall conjugated polymer nanoparticles (CPNs) with bright far-red/near-infrared emission for targeted cancer imaging with high specificity. The sizes of the ultrasmall CPNs are around 6 nm (CPN6), while large CPNs show sizes around 30 nm (CPN30). Moreover, CPN6 exhibits largely improved fluorescence quantum yield (η) of 41% than CPN30 (25%). Benefiting from the ultrasmall size, bare CPN6 shows largely suppressed nonspecific cellular uptake as compared to CPN30, while cyclic arginine-glycine-aspartic acid (cRGD) functionalized CPN6 (cRGD-CPN6) possesses excellent selectivity toward αvß3 integrin overexpressed MDA-MB-231 cells over other cells in cell mixtures. The faster body clearance of CPN6 over CPN30 indicates its greater potentials as a noninvasive nanoprobe for in vivo and practical applications.

20.
Biomaterials ; 144: 53-59, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28823843

RESUMO

Activatable photosensitizers (PSs) and chemo-prodrugs are highly desirable for anti-cancer therapy to reduce systemic toxicity. However, it is difficult to integrate both together into a molecular probe for combination therapy due to the complexity of introducing PS, singlet oxygen quencher, chemo-drug, chemo-drug inhibitor and active linker at the same time. To realize activatable PS and chemo-prodrug combination therapy, we develop a smart therapeutic platform in which the chemo-prodrug serves as the singlet oxygen quencher for the PS. Specifically, the photosensitizing activity and fluorescence of the PS (TPEPY-SH) are blocked by the chemo-prodrug (Mitomycin C, MMC) in the probe. Meanwhile, the cytotoxicity of MMC is also inhibited by the electron-withdrawing acyl at the nitrogen position next to the linker. Upon glutathione activation, TPEPY-S-MMC can simultaneously release active PS and MMC for combination therapy. The restored fluorescence of TPEPY-SH is also used to report the activation for both PS and MMC as well as to guide the photodynamic therapy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Mitomicina/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Antibióticos Antineoplásicos/análise , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fluorescência , Glutationa/metabolismo , Humanos , Camundongos , Mitomicina/análise , Mitomicina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/análise , Fármacos Fotossensibilizantes/metabolismo , Pró-Fármacos/análise , Pró-Fármacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA