Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050035

RESUMO

The aim of this study was to evaluate the application potential of a recombinant fungal immunomodulatory protein from Ganoderma lucidum (rFIP-glu). First, a recombinant plasmid pPIC9K::FIP-glu-His was transferred into Pichia pastoris for the production of protein. The protein was then to assess its free radical scavenging abilities and the effect on the viability of both human immortalized keratinocytes (HaCaT cells) and mouse B16-F10 melanoma cells (B16 cells) in vitro, followed by the effect on the melanin synthesis of B16 cells. The results of SDS-PAGE and western blot showed that rFIP-glu was successfully expressed. Furtherly, a bioactivity assay in vitro indicated that the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals reached 84.5% at 6.0 mg/mL (p ≤ 0.0001) of rFIP-glu, showing strong antioxidant activity. Subsequently, a safety evaluation demonstrated that rFIP-glu promoted the proliferation of HaCaT cells, with the cell viability reaching 124.3% at 48 µg/mL (p ≤ 0.01), regarding the cell viability of B16 cells after exposure to rFIP-glu (48 µg/mL) significantly inhibited, to 80.7% (p ≤ 0.01). Besides, rFIP-glu inhibited the melanin synthesis of B16 cells in a dose-dependent manner from 100-1000 µg/mL, and rFIP-glu at 500 µg/mL (p ≤ 0.01) exhibited the highest intracellular melanin amount reduction of 16.8%. Furthermore, a mechanism analysis showed that rFIP-glu inhibited tyrosinase (TYR) activity by up-regulating the expression of the microphthalmia-associated transcription factor (MITF) and down-regulating the gene expression of TYR and tyrosinase-related protein-1 (TYRP-1), thus inhibiting melanin synthesis. The data implied that rFIP-glu had significant antioxidant activity and whitening potency. It should be used as raw materials for cosmeceutical applications.


Assuntos
Ganoderma , Melanoma Experimental , Reishi , Animais , Camundongos , Humanos , Ganoderma/metabolismo , Melaninas/metabolismo , Antioxidantes/metabolismo , Proteínas Recombinantes/metabolismo , Reishi/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Melanoma Experimental/tratamento farmacológico , Linhagem Celular Tumoral
2.
Prep Biochem Biotechnol ; 50(4): 357-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31846385

RESUMO

In order to obtain a better fermentation parameter for the production of recombinant Ganoderma lucidum immunomodulatory protein (rFIP-glu), an engineered Pichia pastoris GS115 was investigated on the fermentation time, temperature, methanol concentration and initial pH of media, while immunomodulatory activities of the rFIP-glu was confirmed. L9(33) orthogonal experiment were firstly employed to optimize various fermentation parameters in the shake-flask level. The optimized fermentation parameters were subsequently verified in a 5 L fermenter. Biological activities including cell viability and tumor necrosis factor-alpha (TNF-α) mRNA of the rFIP-glu were evaluated on murine macrophage RAW264.7 cells. The results showed that the yield of rFIP-glu was up to 368.71 µg/ml in the shake-flask, and 613.47 µg/ml in the 5 L fermenter, when the Pichia pastoris was incubated in basic media with the methanol concentration 1.0% and initial pH 6.5, and with constant shaking at 280 rpm for 4 days at 26 °C. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity against RAW264.7 cells, and possessed the ability to induce TNF-α mRNA expression in macrophage RAW264.7 cells. In conclusion, engineered P. pastoris showed a good fermentation property under the optimum fermentation parameters. It could be a candidate industrial strain for further study.


Assuntos
Reatores Biológicos , Proteínas Fúngicas/biossíntese , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Fermentação , Proteínas Fúngicas/toxicidade , Camundongos , Células RAW 264.7 , Proteínas Recombinantes/toxicidade , Reishi/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA