Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307241

RESUMO

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Assuntos
Metais Pesados , Rhizobium , Robinia , Poluentes do Solo , Cádmio/toxicidade , Robinia/fisiologia , Clorofila A , Dióxido de Carbono/análise , Metais Pesados/farmacologia , Clorofila , Minerais , Carotenoides , Biodegradação Ambiental , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 213: 112042, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607336

RESUMO

Aluminum (Al) toxicity severely decreases plant growth and productivity in acidic soil globally. Ectomycorrhizal (ECM) fungi can promote host plant's Al-tolerance by acting as a physical barrier or bio-filter. However, little information is available on the role of ECM fungus on Al immobilization with respect to Al-tolerance. This present study aimed to screen a promising indigenous ECM fungus with high Al-tolerance and to understand its role in Al immobilization related to Al-tolerance. Two ECM fungal strains (Lactarius deliciosus 2 and Pisolithus tinctorius 715) isolated from forest stands in Southwest China were cultured in vitro with 0.0, 1.0 or 2.0 mM Al addition for 21 days to compare their Al accumulation and Al-tolerance. Meanwhile, fungal mycelia were incubated in 0.037 mM Al3+ solutions, and then Al3+ concentrations in the solution were determined at time 2, 5, 10, 20, 40, 60, 120, 180, and 240 min, and the Al3+ immobilization characteristics were evaluated using the pseudo-first order, pseudo-second order and intraparticle diffusion models. Results showed that 1.0 or 2.0 mM Al3+ addition significantly increased fungal biomass production by 23% or 41% in L. deliciosus 2, not in P. tinctorius 715. Fungal Al3+ concentrations in L. deliciosus 2 and P. tinctorius 715 were significantly increased by 293% and 103% under 2.0 mM than under 1.0 mM Al3+ addition. The pH values in the culture solution were significantly decreased by 0.43 after 21 d fungus growth but no changes between these two fungi under the same Al3+ addition. Fungal Al3+ immobilization showed a three-stage trend with initially a rapid rate followed a relatively slower rate until reaching equilibrium. The pseudo-second order model was the best (R2 = 0.98 and 0.99 for L. deliciosus 2 and P. tinctorius 715) to fit the experimentally observed data among the three models. Compared to P. tinctorius 715, L. deliciosus 2 also had greater intercept value, cation exchange capacity (CEC), and extracellular Al3+ proportion in fungal mycelia. Additionally, bio-concentration on Al3+, active site numbers for Al3+, boundary layer thickness, CEC, and immobilization on the cell wall in fungal mycelia were involved in ECM fungal Al-tolerance. These results show that both ECM fungi are Al-tolerant while L. deliciosus 2 is a promising indigenous ECM isolate with higher Al-tolerance in Southwest China, and they can be hence applied to the afforestation and ecological restoration in acidic soil.


Assuntos
Alumínio/metabolismo , Basidiomycota/fisiologia , Poluentes do Solo/metabolismo , Agaricales , Basidiomycota/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , China , Florestas , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA