Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 111, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229298

RESUMO

The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Peptídeos Antimicrobianos , Pichia/genética , Pichia/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/genética
2.
Commun Biol ; 6(1): 1170, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973936

RESUMO

Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.


Assuntos
Escherichia coli , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Bactérias/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834553

RESUMO

With the accelerating growth of antimicrobial resistance (AMR), there is an urgent need for new antimicrobial agents with low or no AMR. Antimicrobial peptides (AMPs) have been extensively studied as alternatives to antibiotics (ATAs). Coupled with the new generation of high-throughput technology for AMP mining, the number of derivatives has increased dramatically, but manual running is time-consuming and laborious. Therefore, it is necessary to establish databases that combine computer algorithms to summarize, analyze, and design new AMPs. A number of AMP databases have already been established, such as the Antimicrobial Peptides Database (APD), the Collection of Antimicrobial Peptides (CAMP), the Database of Antimicrobial Activity and Structure of Peptides (DBAASP), and the Database of Antimicrobial Peptides (dbAMPs). These four AMP databases are comprehensive and are widely used. This review aims to cover the construction, evolution, characteristic function, prediction, and design of these four AMP databases. It also offers ideas for the improvement and application of these databases based on merging the various advantages of these four peptide libraries. This review promotes research and development into new AMPs and lays their foundation in the fields of druggability and clinical precision treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Anti-Infecciosos/química , Peptídeos/química , Antibacterianos/química , Algoritmos
4.
Mar Drugs ; 22(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276646

RESUMO

The marine peptide, American oyster defensin (AOD), is derived from Crassostrea virginica and exhibits a potent bactericidal effect. However, recombinant preparation has not been achieved due to the high charge and hydrophobicity. Although the traditional fusion tags such as Trx and SUMO shield the effects of target peptides on the host, their large molecular weight (12-20 kDa) leads to the yields lower than 20% of the fusion protein. In this study, a short and acidic fusion tag was employed with a compact structure of only 1 kDa. Following 72 h of induction in a 5 L fermenter, the supernatant exhibited a total protein concentration of 587 mg/L. The recombinant AOD was subsequently purified through affinity chromatography and enterokinase cleavage, resulting in the final yield of 216 mg/L and a purity exceeding 93%. The minimum inhibitory concentrations (MICs) of AOD against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus galactis ranged from 4 to 8 µg/mL. Moreover, time-killing curves indicated that AOD achieved a bactericidal rate of 99.9% against the clinical strain S. epidermidis G-81 within 0.5 h at concentrations of 2× and 4× MIC. Additionally, the activity of AOD was unchanged after treatment with artificial gastric fluid and intestinal fluid for 4 h. Biocompatibility testing demonstrated that AOD, at a concentration of 128 µg/mL, exhibited a hemolysis rate of less than 0.5% and a cell survival rate of over 83%. Furthermore, AOD's in vivo therapeutic efficacy against mouse subcutaneous abscess revealed its capability to restrain bacterial proliferation and reduce bacterial load, surpassing that of antibiotic lincomycin. These findings indicate AOD's potential for clinical usage.


Assuntos
Crassostrea , Animais , Camundongos , Crassostrea/metabolismo , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas Recombinantes/farmacologia , Defensinas/farmacologia , Testes de Sensibilidade Microbiana
5.
BMC Microbiol ; 22(1): 128, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549900

RESUMO

BACKGROUND: Enteropathogenic Escherichia coli and Salmonella pullorum are two important groups of zoonotic pathogens. At present, the treatment of intestinal pathogenic bacteria infection mainly relies on antibiotics, which directly inhibit or kill the pathogenic bacteria. However, due to long-term irrational, excessive use or abuse, bacteria have developed different degrees of drug resistance. N6, an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is poorly resistant to enzymatic hydrolysis and distribution in vivo. Polyethylene glycol (PEG) is an extensively studied polymer and commonly used in protein or peptide drugs to improve their therapeutic potential. Here, we modified the N-/C-terminal or Cys residue of N6 with liner PEGn of different lengths (n = 2, 6,12, and 24), and the effects of PEGylation of N6 on the stability, toxicity, bactericidal mechanism, distribution and efficacy were investigated in vitro and in vivo. RESULTS: The antimicrobial activity of the peptide showed that PEGylated N6 at the C-terminus (n = 2, N6-COOH-miniPEG) had potent activity against Gram-negative bacteria; PEGylated N6 at the N-terminus and Cys residues showed low or no activity with increasing lengths of PEG. N6-COOH-miniPEG has higher stability in trypsin than the parent peptide-N6. N6-COOH-miniPEG significantly regulated cytokine expression in lipopolysaccharides (LPS)-induced RAW 264.7 cells, and the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß were reduced by 31.21%, 65.62% and 44.12%, respectively, lower than those of N6 (-0.06%, -12.36% and -12.73%); N6-COOH-miniPEG increased the level of IL-10 (37.83%), higher than N6 (-10.21%). The data indicated that N6-COOH-miniPEG has more potent anti-inflammatory and immune-regulatory effect than N6 in LPS-stimulated RAW 264.7 cells. N6-COOH-miniPEG exhibited a much wider biodistribution in mice and prolonged in vivo half-time. FITC-labeled N6-COOH-miniPEG was distributed throughout the body of mice in the range of 0.75 - 2 h after injection, while FITC-labeled N6 only concentrated in the abdominal cavity of mice after injection, and the distribution range was narrow. N6-COOH-miniPEG improved the survival rates of mice challenged with E. coli or S. pullorum, downregulated the levels of TNF-α, IL-6, IL-1ß and IL-10 in the serum of LPS-infected mice, and alleviated multiple-organ injuries (the liver, spleen, kidney, and lung), superior to antibiotics, but slightly inferior to N6. CONCLUSIONS: The antibacterial activity, bactericidal mechanism and cytotoxicity of N6-COOH-miniPEG and N6 were similar. N6-COOH-miniPEG has a higher resistance to trysin than N6. The distribution of N6-COOH-miniPEG in mice was superior to that of N6. In exploring the modulatory effects of antimicrobial peptides on cytokines, N6-COOH-miniPEG had stronger anti-inflammatory and immunomodulatory effects than N6. The results suggested that C-terminal PEGylated N6 may provide an opportunity for the development of effective anti-inflammatory and antibacterial peptides.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/metabolismo , Citocinas/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Salmonella/metabolismo , Distribuição Tecidual , Fator de Necrose Tumoral alfa/metabolismo
6.
Appl Microbiol Biotechnol ; 106(9-10): 3639-3656, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35524777

RESUMO

Wound infection caused by Staphylococcus aureus (S. aureus) is a great challenge which has caused significant burden and economic loss to the medical system. NZ2114, a plectasin-derived peptide, is an antibacterial agent for preventing and treating S. aureus infection, especially for methicillin-resistant S. aureus (MRSA) infection. Here, three-dimensional reticulated antimicrobial peptide (AMP) NZ2114 hydrogels were developed based on hydroxypropyl cellulose (HPC) and sodium alginate (SA); they displayed sustained and stable release properties (97.88 ± 1.79% and 91.1 ± 10.52% release rate in 72 h, respectively) and good short-term cytocompatibility and hemocompatibility. But the HPC-NZ2114 hydrogel had a smaller pore size (diameter 0.832 ± 0.420 µm vs. 3.912 ± 2.881 µm) and better mechanical properties than that of the SA-NZ2114 hydrogel. HPC/SA-NZ2114 hydrogels possess efficient antimicrobial activity in vitro and in vivo. In a full-thickness skin defect model, the wound closure of the 1.024 mg/g HPC-NZ2114 hydrogel group was superior to those of the SA-NZ2114 hydrogel and antibiotic groups on day 7. The HPC-NZ2114 hydrogel accelerated wound healing by reducing inflammation and promoting the production of vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and angiogenesis (CD31) through histological and immunohistochemistry evaluation. These data indicated that the HPC-NZ2114 hydrogel is an excellent candidate for S. aureus infection wound dressing. KEY POINTS: •NZ2114 hydrogels showed potential in vitro bactericidal activity against S. aureus •NZ2114 hydrogels could release continuously for 72 h and had good biocompatibility •NZ2114 hydrogels could effectively promote S. aureus-infected wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Alginatos , Antibacterianos/farmacologia , Humanos , Hidrogéis/farmacologia , Peptídeos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
7.
Medicine (Baltimore) ; 101(10): e29031, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451408

RESUMO

INTRODUCTION: Neoadjuvant chemotherapy (NAC) plays an important role in downgrading preoperative tumor size, providing information on regimen activity, and increases treatment efficacy in breast cancer patients. An increasing number of patients have sought Traditional Chinese Medicine (TCM) during NAC to relieve discomfort, regulate immune function, and improve survival. However, limited evidence is available on how concurrent TCM treatment combined with NAC affects tumor response. This study aims to assess the efficacy of Yanghe decoction, a classical warming Yang formula, on pathological complete response (pCR) and explore its mechanism via the phosphatidylinositol-3-kinase/ protein kinase B/nuclear factor kappa-B (PI3K/Akt/NF-κB) pathway-mediated immune-inflammation microenvironment. METHODS: A single-center, randomized, placebo-controlled, double-blinded randomized control trial (RCT) was designed. This trial aims to recruit 128 participants with breast cancer scheduled to receive NAC in China. All participants will be randomly assigned (1:1) to the Neo-Yanghe group (Yanghe decoction plus NAC) or the control group (placebo plus NAC). The primary outcome will be evaluated by the proportion of participants achieving pCR. The secondary outcomes include the expression level of PI3K/Akt/NF-κB pathway-related proteins, the objective response rate, the time to response, serum level of immune-inflammatory indicators, quality of life, disease-free survival, and overall survival. DISCUSSION: This study will be the first RCT to evaluate the efficacy of Yanghe decoction combined with NAC in treating breast cancer patients, and elucidate the antitumor mechanism via the PI3K/Akt/NF-κB pathway-mediated immune-inflammation microenvironment. If possible, Neo-Yanghe treatment pattern will be a better pharmacological intervention to manage breast cancer than chemotherapy alone. The results of the trial will provide research-based evidence for the development of integrated Chinese and Western medicine guidelines and expert consensus.Trial registration: Chinese Clinical Trial Registry ChiCTR-INR-2000036943. Registered on September 28, 2020 (https://www.chictr.org.cn/hvshowproject.aspx?id=57141).


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Neoplasias da Mama/patologia , Método Duplo-Cego , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Imunidade , Inflamação/tratamento farmacológico , NF-kappa B , Terapia Neoadjuvante , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Resultado do Tratamento , Microambiente Tumoral
8.
Appl Microbiol Biotechnol ; 105(4): 1489-1504, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33534018

RESUMO

Streptococcus dysgalactiae, considered one of the main pathogens that causes bovine mastitis, is a serious threat to humans and animals. However, the excessive use of antibiotics and the characteristic of S. dysgalactiae forming biofilms in mastitic teat canal have serious clinical implications. In this study, in vivo and in vitro multiple mechanisms of action of P2, a mutant of fungal defensin plectasin, against S. dysgalactiae were systematically and comprehensively investigated for the first time. P2 showed potent antibacterial activity against S. dysgalactiae (minimum inhibitory concentration, MIC = 0.23-0.46 µM) and rapid bactericidal action by 3.0 lg units reduction in 2-4 h. No resistant mutants appeared after 30-d serial passage of S. dysgalactiae in the presence of P2. The results of electron microscopy and flow cytometer showed that P2 induced membrane damage of S. dysgalactiae, causing the leakage of cellular content and eventually cell death. Besides, P2 effectively inhibited early biofilm formation, eradicated mature biofilms, and killed 99.9% persisters which were resistant to 100 × MIC vancomycin; and confocal laser scanning microscopy (CLSM) also revealed the potent antibacterial and antibiofilm activity of P2 (the thickness of biofilm reduced from 18.82 to 7.94 µm). The in vivo therapeutic effect of P2 in mouse mastitis model showed that it decreased the number of mammary bacteria and alleviated breast inflammation by regulating cytokines and inhibiting bacterial proliferation, which were superior to vancomycin. These data indicated that P2 maybe a potential candidate peptide for mastitis treatment of S. dysgalactiae infections. KEY POINTS: •P2 showed potential in vitro antibacterial characteristics towards S. dysgalactiae. •P2 eradicated biofilms, killed persisters, and induced cell death of S. dysgalactiae. •P2 could effectively protect mice from S. dysgalactiae infection in gland.


Assuntos
Antibacterianos , Biofilmes , Animais , Antibacterianos/farmacologia , Bovinos , Defensinas , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos , Streptococcus
9.
Appl Microbiol Biotechnol ; 105(6): 2351-2361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635357

RESUMO

Aeromonas veronii can cause a variety of diseases such as sepsis in humans and animals. However, there has been no effective way to eradicate A. veronii. In this study, the intracellular antibacterial activities of the C-terminal aminated marine peptide N6 (N6NH2) and its D-enantiomer (DN6NH2) against A. veronii were investigated in macrophages and in mice, respectively. The result showed that DN6NH2 with the minimum inhibitory concentration (MIC) of 1.62 µM is more resistant to cathepsin B than N6NH2 (3.23 µM). The penetration percentages of the cells treated with 4-200 µg/mL fluorescein isothiocyanate (FITC)-DN6NH2 were 52.5-99.6%, higher than those of FITC-N6NH2 (27.0-99.1%). Both N6NH2 and DN6NH2 entered macrophages by macropinocytosis and an energy-dependent manner. DN6NH2 reduced intracellular A. veronii by 34.57%, superior to N6NH2 (19.52%). After treatment with 100 µg/mL DN6NH2, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß were reduced by 53.45%, 58.54%, and 44.62%, respectively, lower than those of N6NH2 (15.65%, 12.88%, and 14.10%, respectively); DN6NH2 increased the IL-10 level (42.94%), higher than N6NH2 (7.67%). In the mice peritonitis model, 5 µmol/kg DN6NH2 reduced intracellular A. veronii colonization by 73.22%, which was superior to N6NH2 (32.45%) or ciprofloxacin (45.67%). This suggests that DN6NH2 may be used as the candidate for treating intracellular multidrug-resistant (MDR) A. veronii. KEY POINTS: • DN6NH2 improved intracellular antibacterial activity against MDR A. veronii. • DN6NH2 entered macrophages by micropinocytosis and enhanced the internalization rates. • DN6NH2 effectively protected the mice from infection with A. veronii.


Assuntos
Aeromonas , Infecções por Bactérias Gram-Negativas , Peritonite , Aeromonas veronii , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Peritonite/tratamento farmacológico
10.
Biochem Cell Biol ; 99(1): 66-72, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32597211

RESUMO

Piglets, especially weaning piglets, show a lower level of immunity and higher morbidity and mortality, owing to their rapid growth, physiological immaturity, and gradual reduction of maternal antibodies, which seriously affects their growth and thus, value. It is important that piglets adapt to nutrient digestion and absorption and develop sound intestinal function and colonization with gut microbiota as soon as possible during their early life stage. Lactoferrin is a natural glycoprotein polypeptide that is part of the transferrin family. It is widely found in mucosal secretions such as saliva and tears, and most highly in milk and colostrum. As a multifunctional bioactive protein and a recommended food additive, lactoferrin is a potential alternative therapy to antibiotics and health promoting additive for piglet nutrition and development. It is expected that lactoferrin, as a natural food additive, could play an important role in maintaining pig health and development. This review examines the following known beneficial effects of lactoferrin: improves the digestion and capacity for absorption in the intestinal tract; promotes the absorption of iron and reduces the incidence of iron deficiency anemia; regulates intestinal function and helps to balance the microbial biota; and enhances the resistance to disease of the piglets via modulating and enhancing the immune system.


Assuntos
Lactoferrina/imunologia , Animais , Animais Recém-Nascidos , Microbioma Gastrointestinal , Intestinos , Ferro/imunologia , Suínos
11.
FEBS J ; 288(4): 1091-1106, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32681661

RESUMO

In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/antagonistas & inibidores , Proteínas do Citoesqueleto/antagonistas & inibidores , Peptídeos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/metabolismo , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Virulência/efeitos dos fármacos
12.
Appl Microbiol Biotechnol ; 104(15): 6693-6705, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506158

RESUMO

Staphylococcus aureus is a common pathogen that can cause clinical and subclinical endometritis in humans and animals. In this study, a designed CSαß peptide ID13 from DLP4 exhibited high stable antibacterial activity in simulated gastric fluid (90.79%), serum (99.54%), and different pH buffers (> 99%) against S. aureus CVCC 546 and lower cytotoxicity (89.62% viability) than its parent peptide DLP4 (74.14% viability) toward mouse endometrial epithelial cells (MEECs). ID13 caused a depolarization of bacterial membrane and downregulation of the expression of genes involved in membrane potential maintenance and biofilm formation. The in vitro efficacy analysis of ID13 showed a synergistic effect with vancomycin, ampicillin, rifampin, and ciprofloxacin; intracellular antimicrobial activity against S. aureus CVCC 546 in MEECs; and the ability to inhibit lipoteichoic acid-induced pro-inflammatory cytokines from RAW 264.7. In the S. aureus-induced endometritis of mice, similar to vancomycin, ID13 remarkably alleviated pathological conditions, inhibited the production of cytokines (TNF-α, IL-1ß, IL-6, and IL-10), and suppressed the TLR2-NF-κB signal pathway. Collectively, these results suggest that ID13 could be a potential candidate peptide for therapeutic application in S. aureus-induced endometritis. Key Points •Higher antibacterial activity and lower hemolysis of ID13 than DLP4. •ID13 could downregulate the genes of bacterial survival and infection. •ID13 could alleviate the S. aureus-induced endometritis of mice. •ID13 could regulate the cytokines and suppress the TLR2-NF-κB signal pathway.


Assuntos
Antibacterianos/uso terapêutico , Endometrite/tratamento farmacológico , Endometrite/microbiologia , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Sinergismo Farmacológico , Endométrio/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Camundongos , Proteínas Citotóxicas Formadoras de Poros/síntese química , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
13.
Sci Rep ; 9(1): 7968, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138863

RESUMO

Bovine mastitis is mainly caused by Staphylococcus aureus, which is difficult to eliminate, prone to escape from antibacterial agents, and may cause recurring infections due to the intracellular nature of its infection and multidrug resistance. In this study, the intracellular activities of the NZ2114 derivative peptide H18R (H2) against methicillin-resistant S. aureus (MRSA) and multidrug-resistant bovine S. aureus strains were investigated in bovine mammary epithelial MAC-T cells and mouse mammary glands. The minimum inhibitory concentrations of H2 against S. aureus were 0.5‒1 µg/ml; H2 displayed a lower cytotoxicity than its parental peptide NZ2114 (survival rates of MAC-T cells: 100% [H2 treatment] vs 60.7% [NZ2114 (256 µg/ml) treatment]). H2 was internalized into MAC-T cells mainly via clathrin-mediated endocytosis, and distributed in the cytoplasm. The intracellular inhibition rates against MRSA ATCC43300, the mastitis isolates S. aureus CVCC 3051 and E48 were above 99%, 99%, and 94%, respectively; these were higher than those in case of vancomycin (23-47%). In the mouse model of S. aureus E48-induced mastitis, after treatment with 100 µg of H2 and vancomycin, bacterial numbers in each mammary gland were reduced by 3.96- and 1.59-log CFU, respectively. Additionally, similar to NZ2114 and vancomycin, H2 alleviated the histopathological damage of the mammary tissue and polymorphonuclear neutrophil infiltration in the alveoli. These results suggest that H2 can be used as a safe and effective candidate for treating S. aureus-induced mastitis.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite Bovina/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bovinos , Linhagem Celular , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Endocitose , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Infiltração de Neutrófilos/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Vancomicina/farmacologia
14.
Appl Microbiol Biotechnol ; 103(13): 5193-5213, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025073

RESUMO

There is an urgent need to discover new active drugs to combat methicillin-resistant Staphylococcus aureus, which is a serious threat to humans and animals and incompletely eliminated by antibiotics due to its intracellular accumulation in host cells, production of biofilms, and persisters. Fungal defensin-like peptides (DLPs) are emerging as a potential source of new antibacterial drugs due to their potent antibacterial activity. In this study, nine novel fungal DLPs were firstly identified by querying against UniProt databases and expressed in Pichia pastoris, and their antibacterial and anti-biofilm ability were tested against multidrug-resistant (MDR) S. aureus. Results showed that among them, P2, the highest activity and expression level, showed low toxicity, no resistance, and high stability. Minimal inhibitory concentrations (MICs) of P2 against Gram-positive bacteria were < 2 µg/mL. P2 exhibited the potent activity against intracellular MDR S. aureus (bacterial reduction in 80-97%) in RAW264.7 macrophages. P2 bound to/disrupted bacterial DNA, wrinkled outer membranes and permeabilized cytoplasmic membranes, but maintained the integrity of bacterial cells. P2 inhibited/eradicated the biofilm and killed 99% persister bacteria, which were resistant to 100× MIC vancomycin. P2 upregulated the anti-inflammatory cytokine (IL-10) and downregulated pro-inflammatory cytokines (TNF-α/IL-1ß) and chemokine (MCP-1) levels in RAW 264.7 macrophages and in mice, respectively. Five milligram per kilogram P2 enhanced the survival of S. aureus-infected mice (100%), superior to vancomycin (30 mg/kg), inhibited the bacterial translocation, and alleviated multiple-organ injuries (liver, spleen, kidney, and lung). These data suggest that P2 may be a candidate for novel antimicrobial agents against MDR staphylococcal infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Defensinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Defensinas/genética , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Feminino , Interleucina-10/genética , Interleucina-10/imunologia , Camundongos , Testes de Sensibilidade Microbiana , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Pichia/genética , Células RAW 264.7 , Infecções Estafilocócicas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vancomicina/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-30863725

RESUMO

Streptococcosis is recognized as a leading infectious disease in the swine industry. Streptococcus suis serotype 2 is regarded as the most virulent species, which threatens human and pig health and causes serious economic losses. In this study, multiple in vitro and in vivo effects of MP1102 on multidrug resistant S. suis was studied for the first time. MP1102 exhibited significant antibacterial activity against S. suis (minimum inhibitory concentration, MIC = 0.028-0.228 µM), rapid bacteriocidal action, a longer postantibiotic effect than ceftriaxone, and a synergistic or additive effect with lincomycin, penicillin, and ceftriaxone (FICI = 0.29-0.96). No resistant mutants appeared after 30 serial passages of S. suis in the presence of MP1102. Flow cytometric analysis and electron microscopy observations showed that MP1102 destroyed S. suis cell membrane integrity and affected S. suis cell ultrastructure and membrane morphology. Specifically, a significantly wrinkled surface, intracellular content leakage, and cell lysis were noted, establishing a cyto-basis of nonresistance to this pathogen. DNA gel retardation and circular dichroism analysis indicated that MP1102 interacted with DNA by binding to DNA and changing the DNA conformation, even leading to the disappearance of the helical structure. This result further supported the mechanistic basis of nonresistance via interaction with an intracellular target, which could serve as a means of secondary injury after MP1102 is transported across the membrane. Upon treatment with 2.5-5.0 mg/kg MP1102, the survival of mice challenged with S. suis was 83.3-100%. MP1102 decreased bacterial translocation in liver, lung, spleen, and blood; inhibited the release of interleukin-1ß and tumor necrosis factor-α; and relieved the lung, liver, and spleen from acute injury induced by S. suis. These results suggest that MP1102 is a potent novel antibacterial agent for the treatment of porcine streptococcal disease.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus suis/efeitos dos fármacos , Estruturas Animais/microbiologia , Estruturas Animais/patologia , Animais , Bacteriólise/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , DNA Bacteriano/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Sorogrupo , Infecções Estreptocócicas/patologia , Streptococcus suis/classificação , Streptococcus suis/fisiologia , Streptococcus suis/ultraestrutura , Análise de Sobrevida
16.
Sci Rep ; 8(1): 4204, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523806

RESUMO

Treatment of Staphylococcus aureus infections remains very difficult due to its capacity to survive intracellularly and its multidrug resistance. In this study, the extracellular/intracellular activities of plectasin derivatives-MP1102/NZ2114 were investigated against three methicillin-susceptible/-resistant S. aureus (MSSA/MRSA) strains in RAW 264.7 macrophages and mice to overcome poor intracellular activity. Antibacterial activities decreased 4-16-fold under a mimic phagolysosomal environment. MP1102/NZ2114 were internalized into the cells via clathrin-mediated endocytosis and macropinocytosis and distributed in the cytoplasm; they regulated tumor necrosis factor-α, interleukin-1ß and interleukin-10 levels. The extracellular maximal relative efficacy (Emax) values of MP1102/NZ2114 towards the three S. aureus strains were >5-log decrease in colony forming units (CFU). In the methicillin-resistant and virulent strains, MP1102/NZ2114 exhibited intracellular bacteriostatic efficacy with an Emax of 0.42-1.07-log CFU reduction. In the MSSA ATCC25923 mouse peritonitis model, 5 mg/kg MP1102/NZ2114 significantly reduced the bacterial load at 24 h, which was superior to vancomycin. In MRSA ATCC43300, their activity was similar to that of vancomycin. The high virulent CVCC546 strain displayed a relatively lower efficiency, with log CFU decreases of 2.88-2.91 (total), 3.41-3.50 (extracellular) and 2.11-2.51 (intracellular) compared with vancomycin (3.70). This suggests that MP1102/NZ2114 can be used as candidates for treating intracellular S. aureus.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/metabolismo , Endocitose , Concentração de Íons de Hidrogênio , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Peptídeos/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Staphylococcus aureus/fisiologia
17.
Biometals ; 31(3): 331-341, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29455278

RESUMO

Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.


Assuntos
Lactoferrina/química , Peptídeos/química , Acetilação , Amidas/química , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , Humanos , Lactoferrina/uso terapêutico , Peptídeos/uso terapêutico , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/uso terapêutico
18.
Eur J Med Chem ; 145: 263-272, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29329001

RESUMO

Salmonellae, gram-negative bacteria, are facultative intracellular pathogens that cause a number of diseases in animals and humans. The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacterial infections. In this study, the cell-penetrating peptides (CPPs) bLFcin6 and Tat11 were separately conjugated to the antimicrobial peptide N2, and the antibacterial activity and pharmacodynamics of the CPPs-N2 conjugates were first evaluated against Salmonellae typhimurium in vitro and in macrophage cells. The cytotoxicity, cellular uptake and mechanism of cellular internalization of the CPPs-N2 conjugates were also examined in RAW264.7 cells. Similar to N2, CPPs-N2 have two reverse ß-sheets and three loops. The minimal inhibitory concentration (MIC) of CPPs-N2 was approximately 2 µM, which was higher than that of N2 (0.8 µM). The dose-time curves and cytotoxicity assay showed that both peptide conjugates were more effective than N2 alone at concentrations ranging from 0.25 to 1 × MIC, and they exhibited low cytotoxicity (9.78%-13.54%) at 100 µM. After 0.5 h incubation, the cell internalization ratio of B6N2 and T11N2 exceeded 28.3% and 93.5%, respectively, which was higher than that of N2. The uptake of B6N2 and T11N2 was reduced by low temperature (82.1%-91.7%), chlorpromazine (35.7%-75.1%), and amiloride (26.0%-52.1%), indicating that macropinocytosis and clathrin-mediated endocytosis may be involved. Approximately 98.85% and 91.35% of bacteria were killed within 3 h by T11N2 and B6N2, respectively, which was higher than the percentage killed by N2 (69.74%). Compared with the bactericidal activity of N2 alone, the bactericidal activity of T11N2 and B6N2 was increased by 53.7%-99.6% and 85.3-85.8%, respectively. Both CPPs-N2 conjugates may be excellent candidates for novel antimicrobial agents to treat infectious diseases caused by intracellular pathogens.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Relação Dose-Resposta a Droga , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células RAW 264.7 , Salmonella typhimurium/citologia , Relação Estrutura-Atividade , Fatores de Tempo
19.
PLoS One ; 12(9): e0185215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934314

RESUMO

NZ2114 and MP1102 are novel plectasin-derived peptides with potent activity against Gram-positive bacteria. The antibacterial characteristics and mechanism of NZ2114 and MP1102 against gas gangrene-associated Clostridium perfringens were studied for the first time. The minimal inhibitory concentration and minimal bactericidal concentration of NZ2114 and MP1102 against resistant C. perfringens type A strain CVCC 46 were 0.91 µM. Based on the fractional inhibitory concentration index (FICI) result, an additive or synergic effect was observed between NZ2114 (FICI = 0.5~0.75) or MP1102 (FICI = 0.375~1.0) and antibiotics. The flow cytometry, scanning and transmission electron microscopy analysis showed that both NZ2114 and MP1102 induced obviously membrane damage, such as the leakage of cellular materials, partial disappearance of the cell membrane and membrane peeling, as well as retracting cytoplasm and ghost cell. The gel retardation and circular dichroism (CD) detection showed that NZ2114 and MP1102 could bind to C. perfringens genomic DNA and change the DNA conformation. Moreover, NZ2114 also interfered with the double helix and unwind the genomic DNA. The cell cycle analysis showed that C. perfringens CVCC 46 cells exposed to NZ2114 and MP1102 were arrested at the phase I. These data indicated that both NZ2114 and MP1102 have potential as new antimicrobial agents for gas gangrene infection resulting from resistant C. perfringens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridium perfringens/efeitos dos fármacos , Gangrena Gasosa/microbiologia , Peptídeos/química , Peptídeos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clostridium perfringens/citologia , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Genoma Bacteriano/genética , Cinética
20.
Artigo em Inglês | MEDLINE | ID: mdl-27795369

RESUMO

A marine arenicin-3 derivative, N4, displayed potent antibacterial activity against Gram-negative bacteria, but its antibacterial mode of action remains elusive. The mechanism of action of N4 against pathogenic Escherichia coli was first researched by combined cytological and transcriptomic techniques in this study. The N4 peptide permeabilized the outer membrane within 1 min, disrupted the plasma membrane after 0.5 h, and localized in the cytoplasm within 5 min. Gel retardation and circular dichroism (CD) spectrum analyses demonstrated that N4 bound specifically to DNA and disrupted the DNA conformation from the B type to the C type. N4 inhibited 21.1% of the DNA and 20.6% of the RNA synthesis within 15 min. Several hallmarks of apoptosis-like cell death were exhibited by N4-induced E. coli, such as cell cycle arrest in the replication (R) and division(D) phases, reactive oxygen species production, depolarization of the plasma membrane potential, and chromatin condensation within 0.5 h. Deformed cell morphology, disappearance of the plasma membrane, leakage of the contents, and ghost cell formation were demonstrated by transmission electron microscopy, and nearly 100% of the bacteria were killed by N4. A total of 428 to 663 differentially expressed genes are involved in the response to N4, which are associated mainly with membrane biogenesis (53.9% to 56.7%) and DNA binding (13.3% to 14.9%). N4-protected mice that were lethally challenged with lipopolysaccharide (LPS) exhibited reduced levels of interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor alpha (TNF-α) in serum and protected the lungs from LPS-induced injury. These data facilitate an enhanced understanding of the mechanisms of marine antimicrobial peptides (AMPs) against Gram-negative bacteria and provide guidelines in developing and applying novel multitarget AMPs in the field of unlimited marine resources as therapeutics.


Assuntos
Antibacterianos/uso terapêutico , Endotoxemia/tratamento farmacológico , Escherichia coli/patogenicidade , Peritonite/tratamento farmacológico , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA