Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301646

RESUMO

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , DNA Helicases , Imunidade Inata , Melanoma , Evasão Tumoral , Animais , Camundongos , Antígeno B7-H1/metabolismo , Instabilidade Genômica , Melanoma/imunologia , Melanoma/metabolismo , DNA Helicases/metabolismo
2.
Sci Adv ; 9(42): eadi6153, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862409

RESUMO

The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.

3.
Front Immunol ; 13: 1056622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479131

RESUMO

The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.


Assuntos
Exercício Físico , Nível de Saúde , Receptores de Antígenos de Linfócitos T/genética
4.
Phys Rev Lett ; 127(20): 205501, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860050

RESUMO

Iron is a key constituent of planets and an important technological material. Here, we combine in situ ultrafast x-ray diffraction with laser-induced shock compression experiments on Fe up to 187(10) GPa and 4070(285) K at 10^{8} s^{-1} in strain rate to study the plasticity of hexagonal-close-packed (hcp)-Fe under extreme loading states. {101[over ¯]2} deformation twinning controls the polycrystalline Fe microstructures and occurs within 1 ns, highlighting the fundamental role of twinning in hcp polycrystals deformation at high strain rates. The measured deviatoric stress initially increases to a significant elastic overshoot before the onset of flow, attributed to a slower defect nucleation and mobility. The initial yield strength of materials deformed at high strain rates is thus several times larger than their longer-term flow strength. These observations illustrate how time-resolved ultrafast studies can reveal distinctive plastic behavior in materials under extreme environments.

5.
Clin Cancer Res ; 27(2): 608-621, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148676

RESUMO

PURPOSE: Intratumoral immunosuppression mediated by myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) represents a potential mechanism of immune checkpoint inhibitor (ICI) resistance in solid tumors. By promoting TAM and MDSC infiltration, IL1ß may drive adaptive and innate immune resistance in renal cell carcinoma (RCC) and in other tumor types. EXPERIMENTAL DESIGN: Using the RENCA model of RCC, we evaluated clinically relevant combinations of anti-IL1ß plus either anti-PD-1 or the multitargeted tyrosine kinase inhibitor (TKI), cabozantinib. We performed comprehensive immune profiling of established RENCA tumors via multiparameter flow cytometry, tumor cytokine profiling, and single-cell RNA sequencing (RNA-seq). Similar analyses were extended to the MC38 tumor model. RESULTS: Analyses via multiparameter flow cytometry, tumor cytokine profiling, and single-cell RNA-seq showed that anti-IL1ß reduces infiltration of polymorphonuclear MDSCs and TAMs. Combination treatment with anti-IL1ß plus anti-PD-1 or cabozantinib showed increased antitumor activity that was associated with decreases in immunosuppressive MDSCs and increases in M1-like TAMs. CONCLUSIONS: Single-cell RNA-seq analyses show that IL1ß blockade and ICI or TKI remodel the myeloid compartment through nonredundant, relatively T-cell-independent mechanisms. IL1ß is an upstream mediator of adaptive myeloid resistance and represents a potential target for kidney cancer immunotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-1beta/antagonistas & inibidores , Neoplasias Renais/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Anilidas/administração & dosagem , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/metabolismo , Piridinas/administração & dosagem , RNA-Seq/métodos , Análise de Célula Única/métodos , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Macrófagos Associados a Tumor/classificação , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
6.
Int J Radiat Oncol Biol Phys ; 109(3): 813-818, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190969

RESUMO

PURPOSE: Radiation therapy (RT) modulates the immune characteristics of the tumor microenvironment (TME). It is not known whether these effects are dependent on the type of RT used. METHODS AND MATERIALS: We evaluated the immunomodulatory effects of carbon-ion therapy (CiRT) compared with biologically equivalent doses of photon therapy (PhRT) on solid tumors. Orthotopic 4T1 mammary tumors in immunocompetent hosts were treated with CiRT or biologically equivalent doses of PhRT. Seventy-two hours after RT, tumors were harvested and the immune characteristics of the TME were quantified by flow cytometry and multiplex cytokine analyses. RESULTS: PhRT decreased the abundance of CD4+ and CD8+ T cells in the TME at all doses tested, with compensatory increases in proliferation. By contrast, CiRT did not significantly alter CD8+ T-cell infiltration. High-dose CiRT increased secretion of proinflammatory cytokines by tumor-infiltrating CD8+ T cells, including granzyme B, IL-2, and TNF-α, with no change in IFN-γ. Conversely, high-dose PhRT increased CD8+ T-cell secretion of IFN-γ only. At most of the doses studied, PhRT increased proliferation of immunosuppressive regulatory T cells; this was only seen with high-dose CiRT. Cytokine analyses of bulk dissociated tumors showed that CiRT significantly increased levels of IFN-γ, IL-2, and IL-1ß, whereas PhRT increased IL-6 levels alone. CONCLUSIONS: At low doses, lymphocytes differ in their sensitivity to CiRT compared with PhRT. Unlike PhRT, low-dose CiRT is generally lymphocyte-sparing. At higher doses, CiRT is a more potent inducer of proinflammatory cytokines and merits further study as a modulator of the immunologic characteristics of the TME.


Assuntos
Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/efeitos da radiação , Radioterapia com Íons Pesados , Neoplasias Mamárias Animais/radioterapia , Fótons/uso terapêutico , Microambiente Tumoral/efeitos da radiação , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Feminino , Citometria de Fluxo , Granzimas/metabolismo , Granzimas/efeitos da radiação , Imunocompetência , Interferon gama/metabolismo , Interferon gama/efeitos da radiação , Interleucina-1beta/metabolismo , Interleucina-1beta/efeitos da radiação , Interleucina-2/metabolismo , Interleucina-2/efeitos da radiação , Interleucina-6/metabolismo , Interleucina-6/efeitos da radiação , Neoplasias Mamárias Animais/imunologia , Camundongos , Eficiência Biológica Relativa , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos da radiação , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/efeitos da radiação
7.
J Immunother Cancer ; 7(1): 277, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653272

RESUMO

BACKGROUND: Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS: We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS: Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS: BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.


Assuntos
Antineoplásicos/farmacologia , Imunidade/efeitos dos fármacos , Neoplasias da Próstata/imunologia , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
8.
Nat Commun ; 10(1): 153, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635572

RESUMO

A drastically altered chemistry was recently discovered in the Fe-O-H system under deep Earth conditions, involving the formation of iron superoxide (FeO2Hx with x = 0 to 1), but the puzzling crystal chemistry of this system at high pressures is largely unknown. Here we present evidence that despite the high O/Fe ratio in FeO2Hx, iron remains in the ferrous, spin-paired and non-magnetic state at 60-133 GPa, while the presence of hydrogen has minimal effects on the valence of iron. The reduced iron is accompanied by oxidized oxygen due to oxygen-oxygen interactions. The valence of oxygen is not -2 as in all other major mantle minerals, instead it varies around -1. This result indicates that like iron, oxygen may have multiple valence states in our planet's interior. Our study suggests a possible change in the chemical paradigm of how oxygen, iron, and hydrogen behave under deep Earth conditions.

9.
Clin Cancer Res ; 24(20): 5058-5071, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29898992

RESUMO

Purpose: In the proper context, radiotherapy can promote antitumor immunity. It is unknown if elective nodal irradiation (ENI), a strategy that irradiates tumor-associated draining lymph nodes (DLN), affects adaptive immune responses and combinatorial efficacy of radiotherapy with immune checkpoint blockade (ICB).Experimental Design: We developed a preclinical model to compare stereotactic radiotherapy (Tumor RT) with or without ENI to examine immunologic differences between radiotherapy techniques that spare or irradiate the DLN.Results: Tumor RT was associated with upregulation of an intratumoral T-cell chemoattractant chemokine signature (CXCR3, CCR5-related) that resulted in robust infiltration of antigen-specific CD8+ effector T cells as well as FoxP3+ regulatory T cells (Tregs). The addition of ENI attenuated chemokine expression, restrained immune infiltration, and adversely affected survival when combined with ICB, especially with anti-CLTA4 therapy. The combination of stereotactic radiotherapy and ICB led to long-term survival in a subset of mice and was associated with favorable CD8 effector-to-Treg ratios and increased intratumoral density of antigen-specific CD8+ T cells. Although radiotherapy technique (Tumor RT vs. ENI) affected initial tumor control and survival, the ability to reject tumor upon rechallenge was partially dependent upon the mechanism of action of ICB; as radiotherapy/anti-CTLA4 was superior to radiotherapy/anti-PD-1.Conclusions: Our results highlight that irradiation of the DLN restrains adaptive immune responses through altered chemokine expression and CD8+ T-cell trafficking. These data have implications for combining radiotherapy and ICB, long-term survival, and induction of immunologic memory. Clinically, the immunomodulatory effect of the radiotherapy strategy should be considered when combining stereotactic radiotherapy with immunotherapy. Clin Cancer Res; 24(20); 5058-71. ©2018 AACR.


Assuntos
Imunoterapia , Linfonodos/patologia , Linfonodos/efeitos da radiação , Neoplasias/patologia , Neoplasias/terapia , Radiocirurgia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Melanoma Experimental , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Prognóstico , Radiocirurgia/métodos , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Phys Chem Chem Phys ; 20(9): 6187-6197, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431823

RESUMO

The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln2Zr2O7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm2Zr2O7 and Nd2Zr2O7. For irradiated Er2Zr2O7, which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

11.
Nature ; 551(7681): 494-497, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29168804

RESUMO

Ultralow-velocity zones (ULVZs) at Earth's core-mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200 kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth's ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth's core. Unlike other candidates for the composition of ULVZs, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core-mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core-mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.

12.
Cancer Immunol Res ; 5(11): 992-1004, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28970196

RESUMO

Radiotherapy (RT) enhances innate and adaptive antitumor immunity; however, the effects of radiation on suppressive immune cells, such as regulatory T cells (Treg), in the tumor microenvironment (TME) are not fully elucidated. Although previous reports suggest an increased Treg infiltration after radiation, whether these Tregs are functionally suppressive remains undetermined. To test the hypothesis that RT enhances the suppressive function of Treg in the TME, we selectively irradiated implanted tumors using the small animal radiation research platform (SARRP), which models stereotactic radiotherapy in human patients. We then analyzed tumor-infiltrating lymphocytes (TIL) with flow-cytometry and functional assays. Our data showed that RT significantly increased tumor-infiltrating Tregs (TIL-Treg), which had higher expression of CTLA-4, 4-1BB, and Helios compared with Tregs in nonirradiated tumors. This observation held true across several tumor models (B16/F10, RENCA, and MC38). We found that TIL-Tregs from irradiated tumors had equal or improved suppressive capacity compared with nonirradiated tumors. Our data also indicated that after RT, Tregs proliferated more robustly than other T-cell subsets in the TME. In addition, after RT, expansion of Tregs occurred when T-cell migration was inhibited using Fingolimod, suggesting that the increased Treg frequency was likely due to preferential proliferation of intratumoral Treg after radiation. Our data also suggested that Treg expansion after irradiation was independent of TGFß and IL33 signaling. These data demonstrate that RT increased phenotypically and functionally suppressive Tregs in the TME. Our results suggest that RT might be combined effectively with Treg-targeting agents to maximize antitumor efficacy. Cancer Immunol Res; 5(11); 992-1004. ©2017 AACR.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/radioterapia , Radiocirurgia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Feminino , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Interleucina-33/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Fator de Crescimento Transformador beta/imunologia , Carga Tumoral , Microambiente Tumoral/imunologia
13.
Phys Rev Lett ; 110(20): 205501, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167424

RESUMO

We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

14.
Proc Natl Acad Sci U S A ; 104(14): 5727-31, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17389387

RESUMO

Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H(2)O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H(2)-H(2) distance of only 2.93 A. This distance is much shorter than that in the solid/metallic hydrogen (3.78 A), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu(3)[Co(CN)(6)](2) and Cu(3)(BTC)(2) (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds.


Assuntos
Gases/química , Hidrogênio/química , Difração de Nêutrons/métodos , Difração de Nêutrons/tendências , Desenho de Equipamento , Ligação de Hidrogênio , Metano/síntese química , Modelos Químicos , Modelos Moleculares , Difração de Nêutrons/instrumentação , Pressão , Temperatura , Água/química
15.
Science ; 312(5773): 564-5, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16645091

RESUMO

The boundary layer between the crystalline silicate lower mantle and the liquid iron core contains regions with ultralow seismic velocities. Such low compressional and shear wave velocities and high Poisson's ratio are also observed experimentally in post-perovskite silicate phase containing up to 40 mol% FeSiO3 endmember. The iron-rich post-perovskite silicate is stable at the pressure-temperature and chemical environment of the core-mantle boundary and can be formed by core-mantle reaction. Mantle dynamics may lead to further accumulation of this material into the ultralow-velocity patches that are observable by seismology.

16.
Proc Natl Acad Sci U S A ; 102(28): 9751-3, 2005 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-15994226

RESUMO

High-pressure experiments and theoretical calculations demonstrate that an iron-rich ferromagnesian silicate phase can be synthesized at the pressure-temperature conditions near the core-mantle boundary. The iron-rich phase is up to 20% denser than any known silicate at the core-mantle boundary. The high mean atomic number of the silicate greatly reduces the seismic velocity and provides an explanation to the low-velocity and ultra-low-velocity zones. Formation of this previously undescribed phase from reaction between the silicate mantle and the iron core may be responsible for the unusual geophysical and geochemical signatures observed at the base of the lower mantle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA