Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 26(3): 639-651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770416

RESUMO

BACKGROUND: To assess the levels and potential therapeutic and prognostic significance of TIGIT in invasive breast cancer. METHODS: The Cancer Genome Atlas database was used to evaluate TIGIT levels in invasive breast cancer and its association with clinicopathological features. Immunohistochemistry (IHC) was performed to validate it. Further, the Kaplan-Meier survival curve, univariate and multivariate Cox regression models were applied in analyzing the role of TIGIT in the prognosis of invasive breast cancer. Go / KEGG enrichment analyses techniques were used to investigate the possible cellular mechanism, and string database was used to explore TIGIT-related proteins. Finally, the TIMER database was used to determine the association between TIGIT and immune cell infiltrations. RESULTS: TIGIT was differentially expressed in Pan cancer tissues compared with normal tissues. Relative to normal tissues, TIGIT levels in invasive breast cancer were elevated (p<0.05). TIGIT mRNA level was significantly different from T stage, age, ER and PR level (p<0.05). The high levels of TIGIT exhibited positive correlations with PFI and OS (p<0.05). Univariate analysis revealed that age, clinical stage, high TNM stage, menopausal status and radiotherapy were the factors affecting OS (p< 0.05). Multivariate analysis revealed that age, high clinical stage and menopausal status were independent risk factors for tumor progression (p<0.05). CD226, INPP5D, PVR, PVRL2 and PVRL3 proteins interact with TIGIT. The TIGIT levels were significantly correlated with infiltrations of immune cells (such as CD8+ T cells) (r=0.917, p<0.05). CONCLUSION: TIGIT is elevated in invasive breast tumor and is closely associated with the prognosis of invasive breast cancer. TIGIT may be the target of immunotherapy for invasive breast cancer.


Assuntos
Imunoterapia , Neoplasias , Prognóstico , Bases de Dados Factuais , Estimativa de Kaplan-Meier , Análise Multivariada
2.
Int. j. morphol ; 40(5): 1152-1164, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1405284

RESUMO

SUMMARY: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) can protect diabetic kidneys, but the mechanisms are unclear. This work is to investigate the potential mechanisms of C. tinctoria Nutt. in the treatment of diabetic nephropathy based on network pharmacology analysis of its active ingredients. Twelve small molecular compounds of C. tinctoria Nutt. and targets related to diabetic nephropathy were docked by Discovery Studio 3.0. DAVID database was used for GO enrichment and KEGG pathway analysis. Cytoscape 3.6.1 was used to construct active ingredient-target network. Cell viability was detected with MTT. Glucose consumption was analyzed with glucose oxidase method. Protein expression was measured with Western blot and immunofluorescence. Electron microscopy observed autophagosomes. The core active ingredients of C. tinctoria Nutt. included heriguard, flavanomarein, maritimein, and marein. Twenty-one core targets of the 43 potential targets were PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK, and ABL2. These 21 core targets were significantly enriched in 50 signaling pathways. Thirty- four signaling pathways were closely related to diabetic nephropathy, of which the top pathways were PI3K/AKT, insulin, and mTOR, and insulin resistance. The enriched GO terms included biological processes of protein phosphorylation, and the positive regulation of PI3K signaling and cytokine secretion; cellular components of cytosol, extracellular region, and extracellular space; and molecular function of protein kinase activity, ATP binding, and non-membrane spanning protein tyrosine kinase activity. In vitro experiments found that marein increased the expression of phosphorylated AKT/AKT in human renal glomerular endothelial cells of an insulin resistance model induced by high glucose, as well as increased and decreased, respectively, the levels of the microtubule-associated proteins, LC3 and P62. C. tinctoria Nutt. has many active ingredients, with main ingredients of heriguard, flavanomarein, maritimein, and marein, and may exert anti-diabetic nephropathy effect through various signaling pathways and targets.


RESUMEN: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) puede proteger riñones diabéticos, sin embargo los mecanismos son desconocidos. Este trabajo se realizó para investigar los potenciales mecanismos de C. tinctoria Nutt. en el tratamiento de la nefropatía diabética basado en el análisis de farmacología en red de sus principios activos. Doce compuestos moleculares pequeños de C. tinctoria Nutt. y los objetivos relacionados con la nefropatía diabética fueron acoplados por Discovery Studio 3.0. La base de datos DAVID se utilizó para el enriquecimiento GO y el análisis de la vía KEGG. Se usó Cytoscape 3.6.1 para construir una red de ingrediente-objetivo activa. La viabili- dad celular se detectó mediante MTT. El consumo de glucosa se analizó con el método de glucosa oxidasa. La expresión proteica fue determinada mediante Western blot e inmunofluorescencia. En la microscopía electrónica se observó autofagosomas. Los principales ingredientes activos de C. tinctoria Nutt. incluyeron heriguard, flavanomarein, maritimin y marein. Veintiún de los 43 objetivos potenciales fueron PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK y ABL2. Estos 21 objetivos principales se enriquecieron significativamente en 50 vías de señalización. Treinta y cuatro vías de señalización estuvieron estrechamente relacionadas con la nefropatía diabética, de las cuales las principales vías fueron PI3K/ AKT, insulina y mTOR, y resistencia a la insulina. Los términos GO enriquecidos incluyeron procesos biológicos de fosforilación proteica, la regulación positiva de la señalización de PI3K y la secreción de citoquinas; componentes celulares del citosol, región extracelular y espacio extracelular; y la función molecular de la actividad de la proteína quinasa, la unión de ATP y la actividad de la proteína tirosina quinasa que no se extiende por la membrana. Los experimentos in vitro encontraron que la mareína aumentaba la expresión de AKT/AKT fosforilada en células endoteliales glomerulares renales humanas en un modelo de resistencia a la insulina inducida por niveles elevados de glucosa, así como aumentaron y disminuyeron respectivamente, los niveles de las proteínas asociadas a los microtúbulos, LC3 y P62. C. tinctoria Nutt. tiene muchos principios activos, con ingredientes principales de heriguard, flavanomarein, maritimain y marein, y puede ejercer un efecto de nefropatía antidiabética a través de distintass vías de señalización y objetivos.


Assuntos
Coreopsis/química , Nefropatias Diabéticas , Farmacologia em Rede , Microscopia Eletrônica , Western Blotting , Imunofluorescência , Chalconas
3.
Int. j. morphol ; 39(6): 1635-1645, dic. 2021.
Artigo em Inglês | LILACS | ID: biblio-1385530

RESUMO

SUMMARY: Marein is the main active substance of Coreopsis tinctoria nutt. It not only has anti-oxidation and anti-tumor effects, but also can lower blood lipid, prevent high blood glucose, improve insulin resistance, inhibit gluconeogenesis and promote glycogen synthesis. However, the exact mechanism of its action is still unclear. Here, we explored the effect and mechanism of Marein on insulin resistance. The mice were divided into db/m, db/db, metformin+db/db, and marein+db/db groups. The body weight and kidney weight were recorded. Serum biochemical and renal function tests were measured after 8 weeks of continuous administration. Kidney tissues were subjected to HE staining, PAS staining, and Masson staining. The effect of marein on PI3K/Akt signal and autophagy pathway was detected by Western blot. After 8 weeks of Marein intervention, the body weight and kidney weight of mice did not change significantly, but the fasting blood glucose and blood lipid levels were significantly reduced than db/db group. Marein significantly improved the insulin resistance index, increased serum adiponectin and improved glucose and lipid metabolism disorders of db/db mice. Moreover, marein improved the basement membrane thickness of glomeruli and tubules, improved glomerular sclerosis and tubular fibrosis, as well as renal insufficiency, thereby protecting kidney function and delaying the pathological damage. Furthermore, marein increased the expression of PI3K and the phosphorylation of Akt/Akt (Ser473), and promoted the expression of LC3II/I, Beclin1 and ATG5. Additionally, it promoted the expression of FGFR1 in the kidney of db/db mice, and promoted the increase of serum FGF21 and FGF23. Marein has a protective effect on the kidneys of diabetic mice. It protects diabetic nephropathy by regulating the IRS1/PI3K/Akt signaling pathway to improve insulin resistance. Therefore, marein may be an insulin sensitizer.


RESUMEN: Marein es la principal sustancia activa de Coreopsis tinctoria nutt. No solo tiene efectos antioxidantes y antitumorales, sino que también puede reducir los lípidos en sangre, prevenir la glucemia alta, mejorar la resistencia a la insulina, inhibir la gluconeogénesis y promover la síntesis de glucógeno. Sin embargo, el mecanismo exacto de su acción aún no está claro. Se analizó el efecto y el mecanismo de Marein sobre la resistencia a la insulina. Los ratones se dividieron en grupos db / m, db / db, metformina + db / db y mareína + db / db. Se registró el peso corporal y el peso de los riñones. Se midieron las pruebas de función renal y bioquímica sérica después de 8 semanas de administración continua. Los tejidos renales se sometieron a tinción HE, tinción PAS y tinción Masson. El efecto de la mareína sobre la señal de PI3K / Akt y la vía de autofagia se detectó mediante Western blot. Al término de 8 semanas de tratamiento con mareína, el peso corporal y el peso de los riñones de los ratones no cambiaron significativamente, pero los niveles de glucosa en sangre y lípidos en sangre en ayunas se redujeron significativamente en relación a los del grupo db / db. Marein mejoró significativamente el índice de resistencia a la insulina, aumentó la adiponectina sérica y mejoró los trastornos del metabolismo de la glucosa y los lípidos de los ratones db / db. Además, la mareína mejoró el grosor de la membrana basal de los glomérulos y túbulos, mejoró la esclerosis glomerular y la fibrosis tubular, así como la insuficiencia renal, protegiendo la función renal y retrasando el daño patológico. Además, la mareína aumentó la expresión de PI3K y la fosforilación de Akt / Akt (Ser473), y promovió la expresión de LC3II / I, Beclin1 y ATG5. Además, promovió la expresión de FGFR1 en el riñón de ratones db / db y el aumento de FGF21 y FGF23 en suero. Marein tiene un efecto protector sobre los riñones de ratones diabéticos. Protege la nefropatía diabética regulando la vía de señalización IRS1 / PI3K / Akt para mejorar la resistencia a la insulina. Por tanto, la mareína puede ser un sensibilizador a la insulina.


Assuntos
Animais , Camundongos , Resistência à Insulina , Chalconas/administração & dosagem , Nefropatias Diabéticas , Autofagia/efeitos dos fármacos , Glicemia , Peso Corporal/efeitos dos fármacos , Imuno-Histoquímica , Western Blotting , Lipídeos/sangue
4.
J Ethnopharmacol ; 250: 112479, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31846746

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Urolithin A (UroA), the main intestinal microflora metabolite of ellagic acid of berries, pomegranate,and some other traditional chinese herbals such as emblica officinalis,etc,has been reported to exhibit anti-inflammatory, anti-oxidative, anti-tumor and pro-autophagy effects. AIM OF THE STUDY: This study evaluated the anti-diabetic and pancreas-protective effects of UroA using a mice model of type 2 diabetes and preliminarily explored its effect on autophagy as well as the mechanism involved. MATERIALS AND METHODS: Type 2 diabetes model was induced by high-fat diet (HFD; 60% energy as fat) and low-dose streptozotocin (85 mg/kg) injection. Mice were administered with UroA (50 mg/kg/d) alone or UroA-chloroquine (autophagy inhibitor) combination for 8 weeks. RESULTS: UroA improved symptoms of diabetic mice such as high water intake volume, high urine volume, significantly decreased fasting blood glucose (FBG), after-glucose-loading glucose, glycated hemoglobin (GHb) levels, plasma C-peptide, malondialdehyde (MDA) and interleukin-1 ß level, increased reduced glutathione (GSH), interleukin-10 content, and glucose tolerance. UroA also improved pancreatic function indexes such as HOMA-ß as evidenced by improved pathological and ultrastructural features of the pancreas assessed by light microscopy and transmission electron microscopy (TEM). Accordingly, UroA decreased mitochondrial swelling and myelin-like cytoplasmic inclusions. UroA significantly upregulated the protein levels of microtubule-associated protein 1 light chain 3-II (LC3II) and beclin1, downregulated sequestosome 1 (p62) accompanied by decreased expression of apoptotic protein cleaved caspase3 in pancreas of diabetic mice. In addition, it increased the phosphorylation level of protein kinase B (p-Akt) and mammalian target of rapamycin (p-mTOR). Most of these effects of UroA were reversed by treatment with autophagy inhibitor chloroquine. CONCLUSIONS: Our findings reveal that the pancreas protective effects of UroA against diabetes were partially mediated by its regulation of autophagy and AKT/mTOR signal pathway.


Assuntos
Cumarínicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Cloroquina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Serina-Treonina Quinases TOR/metabolismo
5.
Biomed Res Int ; 2019: 5280514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032350

RESUMO

The study aims to investigate the effects of the alcohol extract of Coreopsis tinctoria Nutt (AC) on diabetic nephropathy (DN) mice. A total of 30 db/db (DN) mice were divided into 3 groups, which were treated with AC (300 mg/kg/day), metformin (180 mg/kg/day), or saline by gavage for 10 weeks. Ten db/m mice treated with saline were used as normal control (NC group). Body weight (BW) and fasting blood glucose (FBG), HbA1c, 24 h urinary albumin excretion (UAE), and renal pathological fibrosis were analyzed. Expression of miR-192, miR-200b, and proteins in the PTEN/PI3K/AKT pathway was analyzed by qPCR or western blot. The DN mice had significantly higher BW, FBG, and 24 h UAE, as well as more severe pathological fibrosis when compared with NC. Treatment of AC could decrease BW, FBG, and 24 h UAE and alleviated kidney damage. Compared with the NC group, expressions of miR-192 and miR-200b were increased, whereas their target proteins (ZEB2 and PTEN) were reduced in the kidneys of DN mice, which further modulated the expression of their downstream proteins PI3K p85α, P-AKT, P-smad3, and COL4 α1; these proteins were increased in the kidneys of DN mice. In contrast, AC treatment reversed the expression changes of these proteins. These findings demonstrate that AC may protect the kidneys of DN mice by decreasing miR-192 and miR-200b, which could further regulate their target gene expression and modulate the activity of the PTEN/PI3K/AKT pathway to reduce the degree of renal fibrosis.


Assuntos
Coreopsis/química , Diabetes Mellitus/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , MicroRNAs/genética , Albuminúria/urina , Álcoois/química , Animais , Glicemia/isolamento & purificação , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Diabetes Mellitus/urina , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/urina , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hemoglobinas Glicadas/isolamento & purificação , Humanos , Rim/efeitos dos fármacos , Rim/fisiologia , Camundongos , Camundongos Endogâmicos NOD , PTEN Fosfo-Hidrolase/genética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
6.
Zhongguo Zhong Yao Za Zhi ; 42(4): 772-776, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28959851

RESUMO

To compare the amino acid metabolic profiling in urine of spontaneously hypertensive rats (SHR) and normal Wistar rats, and investigate the regulatory effect of extract from Coreopsis tinctoria on blood pressure and amino acid metabolic profiling in SHR. Right aged SHR and Wistar rats were housed to fit the new environment for 2 weeks. After that, their systolic pressure(SBP), diastolic pressure(DBP) were measured and urine was collected. Amino acids profiles for SHR and Wistar rats were acquired by using AQC precolumn derivatization HPLC-fluorescence method, and then partial least squares discriminant analysis(PLS-DA) was applied to facilitate differentiation and determine metabolic differences between collected samples from two groups of rats. Consequently, 40 SHR were randomly divided into 5 groups: model group, high, middle, low dosage groups of C. tinctoria extract (3.2, 1.6,0.8 g•kg⁻¹), and captopril group (4 mg•kg⁻¹). They were treated for 4 weeks by ig administration, and then their urine samples were collected to determine the amino acid metabolic profiling in various groups. After treatment for 4 weeks, as compared with Wistar group, serine, alanine, tyrosine, and cystine in the amino acid metabolic profiling were significantly increased in SHR group. As compared with SHR model group, threonine and methionine were decreased significantly in captopril group (P<0.01); amino acid metabolism was changed to different degrees in high, middle, and low dosage groups of C. tinctoria extract, and the threonine in low dose group was significantly decreased (P<0.01); serine and threonine were decreased (P<0.05), and valine, methionine and lysine were significantly decreased (P<0.01) in middle dose group; threonine, valine, methionine and lysine were significantly decreased in large dose group (P<0.01). The results showed that middle and high doses of extract from C. tinctoria could significantly improve disturbance of amino acid metabolism, help to further clarify the drug property research of C. tinctoria, and provide data support for amino acid metabolic pathway abnormalities in hypertension patients.


Assuntos
Aminoácidos/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Coreopsis/química , Extratos Vegetais/farmacologia , Animais , Hipertensão , Metaboloma , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
7.
Am J Transl Res ; 7(10): 1984-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26692941

RESUMO

AIMS: MicroRNAs play important roles in energy metabolism, insulin synthesis, insulin transport and the development of diabetes. This study aims to investigate the expression and effect of microRNA-130a in Uygur patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Peripheral blood and omental adipose tissues were collected from individuals with normal glucose tolerance and patients with T2DM. The microRNA expression profile of peripheral blood was established by microarray analysis. The differentially expressed microRNAs and possible target genes were identified by bioinformatics analysis. MicroRNA-130a mimics and inhibitors were transfected into 3T3-L1 preadipocytes. RESULTS: Our results showed that microRNA-130a expression level was significantly decreased in peripheral blood and omental adipose tissues of T2DM patients (P < 0.01). Peroxisome proliferator-activated receptors γ (PPARγ) were predicted as target genes of microRNA-130a. This prediction was verified by the results that PPARγ mRNA expression in omental adipose tissues of T2DM patients were significantly increased (P < 0.01). The glucose consumption level after microRNA-130a transfection was significantly decreased (P < 0.05). And, microRNA-130a mimics inhibited PPARγ expression at both mRNA and protein level, further suggesting that PPARγ is a target gene of microRNA-130a. Additionally, adiponectin, lipoprotein lipase, CCAAT enhancer binding protein α, and the downstream genes of PPARγ, were significantly decreased after microRNA-130a mimics transfection. CONCLUSIONS: In conclusion, microRNA-130a is decreased in Uygur patients with T2DM and it may play a role in T2DM through targeting PPARγ.

8.
Diagn Pathol ; 9: 83, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739504

RESUMO

OBJECTIVE: This study is to determine if Adenovirus type 36 (Ad36) infection is related to macrophage infiltration in the obese group and non-obese group and the related molecular mechanisms. METHODS: Ninety obesity patients and 95 non-obesity Uygur individuals were enrolled in this study. CD68 levels in abdominal subcutaneous and omental adipose tissues were detected by immunohistochemistry. The cytokine expression levels of adiponectin (APMI) and visfatin in serum were measured by enzyme-linked immunosorbent assay. Infection of 3T3-L1 cells with Ad36 was performed. Real-time PCR was performed to determine expression levels of APMI and Visfatin genes in the 3T3-L1 preadipocytes infected with Ad36. RESULTS: In the obese individuals infected with Ad36, the expression levels of adiponectin and visfatin in serum was elevated. For the individuals infected with Ad36, the macrophage infiltration (as indicated by CD68 level) in the obese group was also significantly higher than that in the non-obese group (P < 0.05) in both abdominal subcutaneous and omental adipose tissues. The real-time PCR results indicated that APMI mRNA levels and Visfatin mRNA levels in Ad36 infected cells were significantly increased. CONCLUSIONS: Ad36 infection may be a factor related with macrophage infiltration in adipose tissues of the obese patients. The APMI and Visfatin genes may be involved in the mechanism underlying the effect of Ad36 infection on the obese patients. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1849614638119816.


Assuntos
Infecções por Adenovirus Humanos/sangue , Adiponectina/sangue , Citocinas/sangue , Nicotinamida Fosforribosiltransferase/sangue , Sobrepeso/sangue , Células 3T3-L1 , Gordura Abdominal/metabolismo , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/genética , Adipócitos/metabolismo , Adipócitos/virologia , Adiponectina/genética , Adiponectina/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos , Pessoa de Meia-Idade , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Sobrepeso/epidemiologia , Sobrepeso/genética , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-24302962

RESUMO

Ellagic acid (EA) present in many fruits and nuts serves as antiproliferation, anti-inflammatory, and antitumorigenic properties. However, the effect of EA on preadipocytes adipogenesis and its mechanism(s) have not been elucidated. The present study was designed to examine the effect of EA on adipogenesis in 3T3-L1 preadipocytes and underlying mechanism(s) of action involved. Data show that EA administration decreased the accumulation of lipid droplets. The inhibition was diminished when the addition of EA was delayed to days 2-4 of differentiation. Clonal expansion was reduced in the presence of EA. FACS analysis showed that EA blocked the cell cycle at the G1/S transition. EdU incorporation also confirmed that EA refrained cell from entering S phase. Our data also revealed that the differentiation-induced protein expression of Cyclin A and phosphorylation of the retinoblastoma protein (Rb) were impaired by EA. Differentiation-dependent expression and DNA-binding ability of C/EBP α were also inhibited by EA. Alterations in cell cycle-associated proteins may be important with respect to the antiadipogenic action of EA. In conclusion, EA is capable of inhibiting adipogenesis in 3T3-L1 adipocytes possibly through reduction of Cyclin A protein expression and Rb phosphorylation. With the blocking of G1/S phase transition, EA suppresses terminal differentiation and lipid accumulation in 3T3-L1 adipocytes.

10.
Exp Ther Med ; 6(3): 635-640, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24137239

RESUMO

Insulin resistance in obesity is associated with chronic systemic low-grade inflammation. Although it has been shown that Toll-like receptor 4 (TLR4) in the liver, muscle and adipose tissue plays an important role in obesity-associated inflammation and insulin resistance, the effect of TLR4 activation in the intestine has not been investigated. The aim of this study was to explore the activation of the mouse intestinal TLR4/NF-κB signaling pathway following the administration of a short-term high-fat diet, as well as the function of the signaling pathway in the local enteric inflammatory response. The effect of the high-fat diet on TLR4 activation, NF-κB and phosphorylated IκB (PIκB) activity, and tumor necrosis factor (TNF)-α and IL-6 expression in the intestinal tissues of diet-induced obese C57BL/6 mice was investigated. The results demonstrated that the high-fat diet induced TLR4 mRNA and protein expression in intestinal tissues. TLR4/NF-κB signaling pathway activation gradually increased as the number of days of high-fat diet administration increased, and peaked on day 7. Additionally, activation of the signaling pathway reduced PIκB expression levels and increased TNF-α and IL-6 expression levels in intestinal tissues. Our results demonstrated that a short-term high-fat diet induces activation of the TLR4/NF-κB signaling pathway in intestinal tissues, which causes local intestinal low-grade inflammation. These data improve our understanding of the molecular events involved in intestinal low-grade inflammation, which may be the triggering factor for chronic systemic low-grade inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA