Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(11): 4568-4577, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36848326

RESUMO

The passivation of zero-valent aluminum (ZVAl) limits its application in environmental remediation. Herein, a ternary composite material Al-Fe-AC is synthesized via a ball-milling treatment on a mixture of Al0, Fe0, and activated carbon (AC) powders. The results show that the as-prepared micronsized Al-Fe-AC powder could achieve highly efficient nitrate removal and a nitrogen (N2)-selectivity of >75%. The mechanism study reveals that, in the initial stage, numerous Al//AC and Fe//AC microgalvanic cells in the Al-Fe-AC material could lead to a local alkaline environment in the vicinity of the AC cathodes. The local alkalinity depassivated the Al0 component and enabled its continuous dissolution in the subsequent second stage of reaction. The functioning of the AC cathode of the Al//AC microgalvanic cell is revealed as the primary reason accounting for the highly selective reduction of nitrate. The investigation on the mass ratio of raw materials manifested that an Al/Fe/AC mass ratio of 1:1:5 or 1:3:5 was preferable. The test in simulated groundwater suggested that the as-prepared Al-Fe-AC powder could be injected into aquifers to achieve a highly selective reduction of nitrate to nitrogen. This study provides a feasible method to develop high-performance ZVAl-based remedial materials that could work in a wider pH range.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Alumínio , Pós , Ferro , Carvão Vegetal , Nitrogênio , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 443(Pt A): 130204, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308934

RESUMO

In this study, a novel iron-encapsulated biochar (Fe@BC) was prepared using the biomass cultivated with an iron-containing solution. The iron in Fe@BC showed the phase change from Fe3O4 to α-Fe, and to CFe15.1, with the increase of pyrolysis temperature (500-900 °C), and a graphene shell formed on the surface of Fe@BC. In addition, the signals assigned to the π-π* shake up, pyridinic N, graphitic N, and defects of Fe@BC were found to be stronger as the pyrolysis temperature increased. The F4@B9 sample, which was prepared at 900 °C, exhibited an excellent performance (98.01 %) to activate peroxydisulfate (PDS) for the degradation of 2,4-dichlorophenol. Electron paramagnetic resonanceand chemical quenching experiments revealed that reactive oxygen radicals (ROS) including sulfate radical (•SO4-), hydroxyl radical (•OH), superoxide radical (•O2-), and singlet oxygen (1O2) existed in the F4@B9/PDS system. Furthermore, the micro-electrolysis process facilitated the generation of •O2- (12.35 %) and 1O2 (6.49 %) compared with the pure PDS system. Density functional theory revealed that, for the F4@B9-activated PDS process, the graphene shell of F4@B9 served as catalytic active sites as well. According to the correlation analysis, the iron specie of CFe15.1 was more favorable for the generation of ROS than α-Fe. Also, π-π* shake up, pyridinic N, graphitic N, and defects participated in the PDS activation. This study provides a new method for the preparation of high-performance catalysts from naturally grown biomass with high iron contents.


Assuntos
Grafite , Ferro , Ferro/química , Espécies Reativas de Oxigênio , Elétrons , Biônica , Carvão Vegetal/química
3.
J Hazard Mater ; 423(Pt A): 126937, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488096

RESUMO

Thermal desorption is one of the methods commonly used for the remediation of contaminated soil. However, its suitability for the treatment of widespread Cd-contaminated soil was seldom investigated, because the desorption of Cd was found to be difficult, even at a high heating temperature. In the present study, a biomass co-pyrolysis (BCP) method is proposed for the thermal treatment of Cd-contaminated soil. The results showed that, when the mixture of biomass and contaminated soil was pyrolyzed at ~550 oC, the gaseous pyrolytic products (such as CO and hydrocarbon gases) from the biomass could chemically reduce the Cd(II) into volatile Cd0, thereby allowing the evaporation of vaporized Cd0 from the soil within a short operating time. The BCP method can achieve a highly efficient removal of Cd from the soil samples spiked with a large amount of Cd(II). The remediated soil, containing the remaining biochars, showed a good regreening potential and a significant decrease in Cd bioavailability. It also showed a good performance for the remediation of field soils from four contaminated sites (>92% removal efficiencies), and one of the treated soils could even meet the Cd screening level of agricultural land of China.


Assuntos
Cádmio , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Cádmio/análise , Carvão Vegetal , Pirólise , Solo , Poluentes do Solo/análise
4.
J Hazard Mater ; 413: 125381, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930953

RESUMO

The greenhouse gas carbon dioxide (CO2) was converted to a novel CO2 conversion material (electrolytic carbon, EC) by molten salt electrochemical conversion, which served as the carbon source to prepare an iron-carbon composite (Fe-EC). The composite was used to activate persulfate (PS) and degrade 2,4-dichlorophenol (2,4-DCP) in an aqueous solution. The effects of several essential operating parameters such as PS dosage and pH on 2,4-DCP degradation were investigated. The removal efficiency of 2,4-DCP (20 mg L-1) was 97.8% in the presence of Fe-EC (50 mg L-1) and PS (1 mmol L-1). Moreover, the average % reaction stoichiometric efficiency (RSE) (calculated for all selected times 5-60 min) was maintained at 23.07%. Electron paramagnetic resonance (EPR), classical radical scavenging experiments, and density functional theory (DFT) calculations were integrated for a mechanistic study, which disclosed that the active species in the system were identified as SO4⦁-, •OH, and O2⦁-. Moreover, the iron-carbon micro-electrolysis/PS (ICE-PS) system had a high tolerance to a wide range of pH, which would provide theoretical guidance for the treatment of organic pollutants in practical industrial wastewater.

5.
J Colloid Interface Sci ; 592: 358-370, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677196

RESUMO

To improve advanced oxidation processes (AOPs), bio-inspired iron-encapsulated biochar (bio-inspired Fe⨀BC) catalysts with superior performance were prepared from iron-rich biomass of Iris sibirica L. using a pyrolysis method under anaerobic condition. The obtained compounds were used as catalysts to activate perdisulfate (PDS) and then degradate 2,4-dichlorophenol (2,4-DCP), and synthetic iron-laden biochar (synthetic Fe-BC) was used for comparison. The highest removal rate of 2,4-DCP was 98.35%, with 37.03% of this being distinguished as the contribution of micro-electrolysis, greater than the contribution of adsorption (32.81%) or advanced oxidation (28.51%). The high performance of micro-electrolysis could be attributable to the formation of Fe (Iron, syn) and austenite (CFe15.1) with strong electron carrier at 700 °C. During micro-electrolysis, Fe2+ and electrons were gradually released and then used as essential active components to enhance the AOPs. The slow-releasing Fe2+ (K = 0.0048) also inhibited the overconsumption of PDS (K = -0.00056). Furthermore, the electrons donated from Fe⨀BC-4 were able to activate PDS directly. The electrons were enriched by the porous structure of Fe⨀BC-4, and the formation of the COFe bond in the π-electron system could also accelerate the electron transfer to activate PDS. Similar reactive oxygen species (ROS) were identified during the micro-electrolysis and AOPs, leading to similar degradation pathways. The higher does concentration of O2- generated during micro-electrolysis than during the AOPs also led to a greater dechlorination effect.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Carvão Vegetal , Ferro , Oxirredução , Poluentes Químicos da Água/análise
6.
ACS Appl Mater Interfaces ; 12(52): 57870-57880, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320536

RESUMO

The multi-anion molybdenum-based nanohybrids, N-doped ß-Mo2C/MoP/MoOx (denoted as MoCPO), serving as a highly efficient catalyst for hydrogen evolution reaction (HER), are fabricated via a simple and scalable electrosynthesis in molten NaCl-KCl, which integrates pyrolysis/electroreduction/compounding into a one-pot strategy using polyphosphazenes (PPAs) and earth-abundant molybdenite (mainly MoS2) as precursors. The deliberately selected PPA and molten electrolyte ensure the unique lamellar nanostructures and the blending of multiple anions of C, N, P, and O in the obtained catalyst, specifically, triggering the in situ formation of the structural oxygen vacancies (VO) in MoCPO. The nature of the hybrids can be regulated by adjusting the synthesis condition. The optimized hybrid displays a low overpotential of 99.2 mV at 10 mA cm-2 for HER in 0.5 M H2SO4 and stays active over a broad pH range. The theoretical calculations reveal that VO in the hybrids serves as favorable active sites, thus contributing to the superior HER activity. Moreover, MoCPO is also effective for overall water splitting as a bifunctional catalyst.

7.
Environ Sci Technol ; 54(2): 1242-1249, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31838856

RESUMO

Dissolved silicate, as a ubiquitous inorganic component in natural waters, is reported to depress the reactivity of zero-valent iron (ZVI) for reductive reactions under anoxic conditions, but it is unclear if the same inhibitory effect occurs for a ZVI/O2 system. In this study, the role of dissolved silicate for the reactivity of micron-sized ZVI (mZVI) was revisited under aerobic conditions, and different observations were found. Silicate had a volcano-type enhancing effect on the performance of the ZVI/O2 system for sulfamethazine (SMT) degradation. The results showed that, under a circum-neutral or alkaline pH condition (pH 6.0-9.0), the presence of dissolved silicate could significantly enhance the degradation of SMT because silicate coordinated with ferrous ions and further led to the generation of reactive oxygen species (ROS). This study suggests that silicate can act as both a ligand and corrosion inhibitor in a ZVI/O2 system: the coordination of silicate and ferrous iron accelerated the oxidative degradation of organic pollutants in an oxic aqueous solution, while the corrosion inhibitory effect of surface-bound silicate at higher concentrations may decrease the reactivity of the ZVI/O2 system, thereby offsetting the enhancing effect from the silicate-coordinated ferrous iron. This study not only redefines the role of naturally occurring silicate for a ZVI reaction system but also gives clues to develop high-efficiency ZVI/O2 technologies for water remediation.


Assuntos
Ferro , Poluentes Químicos da Água , Estresse Oxidativo , Silicatos , Sulfametazina
8.
RSC Adv ; 8(58): 33383-33390, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35548110

RESUMO

For the purpose of screening a potential Cd-hyperaccumulator for Cd-contaminated soil in paddy fields, four kinds of wetland emergent plants (Iris sibirica L., Acorus calamus L., Typha orientalis Presl and Cyperus alternifolius L.) were investigated for their cadmium tolerance and accumulation characteristics under hydroponic conditions. The physiological responses of plants, Cd concentration in tissues, Cd accumulation, bioaccumulation factor (BCF) and translocation factor (TCF) were investigated to evaluate the abilities of wetland emergent plants to absorb and accumulate Cd. In comparison with the other selected emergent plants, Iris sibirica L. has the strongest Cd-tolerance for the absence of Cd toxic symptoms and a Cd concentration as high as 127.3 mg kg-1 in shoots. Due to its large biomass, the Cd accumulation could reach up to 9.4 mg per plant in roots and 5.7 mg per plant in shoots, respectively. Iris sibirica L. possesses the highest TCF, and its BCF for Cd increased with increasing concentration of spiked Cd in the hydroponic solutions. The results indicate that Iris sibirica L. is a potential Cd-hyperaccumulator that may have a strong capacity for extracting Cd from Cd-contaminated paddy soils.

9.
Environ Sci Technol ; 51(14): 8077-8084, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28609093

RESUMO

Sodium disilicate (SD), an inorganic and environmentally friendly ligand, is introduced into the conventional iron electrolysis system to achieve an oxidizing Fenton process to degrade organic pollutants. Electrolytic ferrous ions, which are complexed by the disilicate ions, can chemically reduce dioxygen molecules via consecutive reduction steps, producing H2O2 for the Fenton-oxidation of organics. At the near-neutral pH (from 6 to 8), the disilicate-Fe(II) complexes possess strong reducing capabilities; therefore, a near-neutral pH rather than an acid condition is preferable for the disilicate-assisted iron electrolysis (DAIE) process. Following the DAIE process, the different complexing capacities of disilicate for ferrous/ferric ions and calcium ions can be used to break the disilicate-iron complexes. The addition of CaO or CaCl2 can precipitate ferrous/ferric ions, disilicates and possibly heavy metals in the wastewater. Compared to previously reported organic and phosphorus ligands, SD is a low-cost inorganic agent that does not lead to secondary pollution, and would not compete with the target organic pollutants for •OH; therefore, it would greatly expand the application fields of the O2 activation process. The combination of DAIE and CaO treatments is envisioned to be a versatile and affordable method for treating wastewater with complicated pollutants (e.g., mixtures of biorefractory organics and heavy metals).


Assuntos
Peróxido de Hidrogênio , Metais Pesados/química , Águas Residuárias , Eletrólise , Ferro , Oxirredução
10.
Sci Rep ; 6: 31987, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27555553

RESUMO

The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250-2000 µm) and fine sand (53-250 µm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.


Assuntos
Grão Comestível/química , Ácidos Ftálicos/química , Poluentes do Solo/química , Solo/química , Triticum/química , Zea mays/química , Produtos Agrícolas , Grão Comestível/metabolismo , Monitoramento Ambiental , Ésteres/química , Humanos , Neoplasias/etiologia , Tamanho da Partícula , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/toxicidade , Medição de Risco , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Triticum/metabolismo , Águas Residuárias/química , Zea mays/metabolismo
11.
J Chem Technol Biotechnol ; 91(4): 938-947, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30473593

RESUMO

BACKGROUND: Electrolysis with an iron anode is a novel way to provide ferrous activators for chemical oxidation. The objective of this study is to evaluate the performance of peroxymonosulfate (PMS) for chlorophenol destruction when compared with H2O2 and persulfate (PS), and to see whether the electrolysis mode facilitates the buildup of conditions that favor the activation of PMS and removal of chlorophenols. RESULTS: Ferrous species can effectively activate the PMS over a wide pH range. In comparison with H2O2 and PS, PMS is less sensitive to the solution's pH and possesses stronger oxidation capability at alkaline pHs. The optimal molar ratio of PMS to Fe(II) activator is 1:1 for the destruction of 2,4-dichlorophenol (2,4-DCP). The column experiments show that an acidic zone developed downstream from the anode is favorable to maintain ferrous ions and subsequent activation of PMS. The reactivity of the PMS can be manipulated by varying the electrical currents, and the process demonstrates effectiveness for treating organic contaminants. 2,4-DCP contaminated groundwater shows decreased biotoxicity after the chemical oxidation process without considering the residual PMS. CONCLUSIONS: Iron electrolysis-assisted peroxymonosulfate chemical oxidation can effectively treat the 2,4-dichlorophenol and mixtures of organic contaminants. This process can be engineered as an in situ chemical oxidation method for groundwater remediation.

12.
Environ Eng Manag J ; 14(12): 2905-2911, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31435204

RESUMO

This study presents enhanced reduction of soluble contaminants in a modified electrocoagulation process that is capable of treating a mixture of aqueous contaminants. By incorporating an iron foam cathode, the process can remove aqueous trichloroethylene (TCE) by 99.1% and nitrate ions by 98.2%, which represents 58.1 and 20 percent higher than the removal rates achieved by iron plate cathode, respectively. pH and ORP measurements indicate the development of a reducing electrolyte condition due to the ferrous generation from an iron anode, which facilitates the reduction of soluble contaminants because the competition from O2 reduction is eliminated in the system. Both iron foam and vitreous carbon foam electrodes are compatible with polarity reversal, without any deterioration in the efficiency of electroreduction of TCE and nitrate. The modified iron electrolysis process demonstrates versatility for the treatment of mixtures of contaminants, including a binary mixture of TCE and dichromate, a mixture of selenate and nitrate and a mixture of phosphate and nitrate. The ferrous species generated from the iron anode can reduce and (or) co-precipitate certain aqueous contaminants such as dichromate, selenate and phosphate, while the cathodic process can directly reduce contaminants like TCE and nitrate. Compared with the conventional electrocoagulation system that consists of two planar electrodes, the proposed process is not only more effective, but also suitable for the development of integrated and versatile process for the treatment of co-contaminated wastewater or groundwater.

13.
Water Res ; 47(17): 6538-45, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24035677

RESUMO

Removal of aqueous selenate by iron electrolysis is investigated using sand-packed column experiments under a flowing condition. An iron anode generates ferrous ions, while cathode produces hydroxide, thus producing ferrous hydroxide capable of reducing selenate to elemental selenium. Additionally, siderite could reduce selenate or selenite to elemental selenium. The removal rate of selenate is proportional to the contact time and the yield of ferrous hydroxide or ferrous carbonate. At a sequence of anode-cathode, the transformation of selenate mostly occurs in the zone after cathode. An operation of 48 h electrolysis finally transforms 82.2% of selenate at 0.2 mM of initial concentration, 1.8 m/day of seepage velocity and 1.26 mA/cm(2) of current density. A longer reactive zone after cathode slightly increases the reduction of selenate to 84.1%, in comparison with 82.2% of a shorter residence time in the reactive zone after cathode. With shorter electrode spacing (approximately 27% shorter), the transformation rate of selenate decreased to 73.5%; however, the specific electrical energy consumption was saved by 78%. A sequence of cathode-anode was ineffective in removing selenate because of the lack of reducing agent in the column. The results indicate that the electrochemical system might be effective in removing selenate in a single well.


Assuntos
Ferro/química , Ácido Selênico/isolamento & purificação , Dióxido de Silício/química , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Espectroscopia Fotoeletrônica , Fatores de Tempo
14.
Electrochim Acta ; 86: 96-101, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-23284182

RESUMO

The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L(-1) in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe(15)Cr(5)(OH)(60) precipitate.

15.
J Environ Sci (China) ; 20(11): 1386-91, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19202880

RESUMO

The mineralization of phenol in aerated electrochemical oxidation has been investigated. The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution containing ferric or ferrous ions; moreover, the reinforcement of cathodic Fenton process on the total organic carbon (TOC) removal rate of phenol is quite distinct. Among the metallic ions investigated, the ferric ion is the best catalyst for the electrochemical mineralization of phenol at initial pH 2.0, and the optimal concentration range is from 50 to 200 mg/L. The favorable pH range and supporting electrolyte (Na2SO4) concentration for mineralization of phenol in solution containing ferrous ions are 1.8-2.3 and below 0.10 mol/L, respectively. UV radiation can improve the TOC removal rate of phenol, but the enhanced effect varies in different solutions. In the solution containing ferric ions, an equal sum or synergetic effect can be observed. The optimal effect of electrolysis system under UV radiation is achieved in the solution containing 50 mg/L Fe3+ with a final removal percentage of 81.3%.


Assuntos
Ferro/química , Fenol/química , Raios Ultravioleta , Catálise/efeitos da radiação , Eletroquímica , Eletrólise , Eletrólitos , Concentração de Íons de Hidrogênio/efeitos da radiação , Íons , Minerais/química , Oxirredução/efeitos da radiação , Soluções , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA