Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1519-1538, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37674366

RESUMO

Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.


Assuntos
Frutose , Transportador de Glucose Tipo 5 , Obesidade , Animais , Humanos , Transporte Biológico , Frutose/metabolismo , Mamíferos/metabolismo , Obesidade/metabolismo , Transportador de Glucose Tipo 5/metabolismo
2.
Medicine (Baltimore) ; 102(29): e34367, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478222

RESUMO

To develop a signature based on anoikis-related genes (ARGs) for predicting the prognosis of patients with hepatocellular carcinoma (HCC), and to elucidate the molecular mechanisms involved. In this study, bioinformatic algorithms were applied to integrate and analyze 777 HCC RNA-seq samples from the cancer genome atlas and international cancer genome consortium repositories. A prognostic signature was developed via the least absolute shrinkage and selection operator-cox regression method. To evaluate the accuracy of the signature in predicting events, multi-type technical means, such as Kaplan-Meier plots, receiver operating characteristic curve analysis, nomogram construction, and univariate and multivariate Cox regression studies were performed. We investigated the underlying molecular biological mechanisms and immune mechanisms of the signature using gene set enrichment analysis and the CIBERSORT R package, respectively. Meanwhile, immunohistochemical staining acquired from the human protein atlas was used to confirm the differential expression levels of hub genes involved in the prognostic signature. We developed an HCC prognostic signature with a collection of 5 ARGs, and the prognostic value was successfully assessed and verified in both the test and validation cohorts. The risk scores calculated by the prognostic signature were proved to be an independent negative prognostic factor for overall survival. A set of nomograms based on risk scores was established and found to be effective in predicting OS. Further investigation of the underlying molecular biological mechanisms and immune mechanisms indicated that the signature may be relevant to metabolic dysregulation and infiltration of gamma delta T cells in the tumor. The survival prognosis of HCC patients can be predicted by the anoikis-related prognostic signature, and it serves as a valuable reference for individualized HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Anoikis/genética , Neoplasias Hepáticas/genética , Nomogramas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA