Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 242, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877465

RESUMO

BACKGROUND: Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS: To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS: In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-ß/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION: In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.


Assuntos
Alcaloides , Diferenciação Celular , Fibroblastos , Camundongos Endogâmicos C57BL , Miofibroblastos , Fibrose Pulmonar , Dióxido de Silício , Silicose , Animais , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Alcaloides/farmacologia , Dióxido de Silício/toxicidade , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Diferenciação Celular/efeitos dos fármacos , Silicose/patologia , Silicose/metabolismo , Silicose/tratamento farmacológico , Masculino
2.
Exp Cell Res ; 433(2): 113850, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926341

RESUMO

Calcineurin plays a key role in cardiovascular pathogenesis by exerting pro-apoptotic effects in cardiomyocytes. However, whether calcineurin can regulate cardiomyocyte autophagy under conditions of chronic intermittent hypoxia (CIH) remains unclear. Here, we showed that CIH induced calcineurin activity in H9c2 cells, which attenuated adenosine monophosphate-activated protein kinase (AMPK) signaling and inhibited autophagy. In H9c2 cells, autophagy levels, LC3 expression, and AMPK phosphorylation were significantly elevated under conditions of CIH within 3 days. However, after 5 days of CIH, these effects were reversed and calcineurin activity and apoptosis were significantly increased. The calcineurin inhibitor 17-Allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl) -1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo- [22.3.1.04,9]octacos-18- ene-2,3,10,16-tetrone (FK506) restored AMPK activation and LC3 expression and attenuated CIH-induced H9c2 cell apoptosis. In contrast, calcineurin overexpression significantly attenuated the increase in LC3 expression and enhanced H9c2 cell apoptosis under conditions of CIH. Calcineurin inhibition failed to induce autophagy or alleviate apoptosis in H9c2 cells expressing a kinase-dead K45R AMPK mutant. Autophagy inhibition abrogated the protective effects of FK506-mediated calcineurin inhibition. These results indicate that calcineurin suppresses adaptive autophagy during CIH by downregulating AMPK activation. Our findings reveal the underlying mechanism of calcineurin and autophagy regulation during H9c2 cell survival under conditions of CIH and may provide a new strategy for preventing CIH-induced cardiomyocyte damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Calcineurina , Miócitos Cardíacos , Animais , Ratos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Calcineurina/metabolismo , Hipóxia , Miócitos Cardíacos/metabolismo , Tacrolimo/farmacologia
3.
Cancer Cell Int ; 23(1): 222, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775731

RESUMO

According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.

4.
Neuro Oncol ; 13(2): 184-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123367

RESUMO

The regulation of the subcellular localization of phosphatase and tensin homologue (PTEN) is critical to its tumor-suppressing functions. Previously, we found that the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR/S6 protein kinase (S6K) cascade triggers the nuclear export of PTEN during the G1/S transition. Because mTOR can be alternatively downregulated by tuberous sclerosis complex 2 (TSC2) activation mediated by 5' adenosine monophosphate-activated protein kinase (AMPK), we proposed that the activation of AMPK α1/2 by LKB1 and/or by calmodulin-dependent protein kinase kinase (CaMKK) would also block the nuclear export of PTEN in a manner similar to that of inhibitors of PI3K, mTOR, and S6K. We found that in LKB1-null A549 lung adenocarcinoma cells, an AMPK activator, metformin, failed to block the nuclear export of PTEN, and the reintroduction of functional LKB1 into these cells restored the metformin-mediated inhibition of the nuclear export of PTEN. In addition, the nuclear export of PTEN was blocked in cells treated with the CaMKK activator ATP, and this inhibition was reversed by the addition of inhibitors of either AMPK (compound C) or CaMKK (STO-609). Although the nuclear export of PTEN is blocked by metformin in MCF-7 breast cancer cells carrying wild-type LKB1, this inhibition could not be reversed by an AMPK inhibitor, suggesting that LKB1 could regulate the nuclear export of PTEN by bypassing AMPK α1/2. Moreover, ATP could not block the nuclear export of PTEN in AMPK α1/2(-/-) or TSC2(-/-) mouse embryonic fibroblasts. However, metformin was still able to induce the LKB1-mediated inhibition of the nuclear export of PTEN in these cells. Taken together, these findings strongly suggest that although CaMKK mediates the nuclear retention of PTEN mainly through the activation of AMPK, LKB1 can regulate the nuclear-cytoplasmic trafficking of PTEN, with or without the AMPK/TSC2/mTOR/S6K-signaling intermediates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Hipoglicemiantes/farmacologia , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metformina/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas
5.
Cancer Res ; 67(22): 11054-63, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006852

RESUMO

The tumor suppressor phosphatase and tensin homologue (PTEN) plays distinct growth-regulatory roles in the cytoplasm and nucleus. It has been shown to be preferentially localized to the nucleus in differentiated or resting cells, and to the cytoplasm in advanced tumor cells. Thus, the regulation of PTEN's subcellular localization seems to be critical to its tumor-suppressing functions. In this study, we showed that activation of the phosphoinositide-3-kinase (PI3K) pathway triggers PTEN's cell cycle-dependent chromosome region maintenance 1-mediated nuclear export, as PTEN was predominantly expressed in the cytoplasm of TSC2(-/-) mouse embryo fibroblasts or activated Akt mutant-transfected NIH3T3 cells. In contrast, dominant-negative mutants of Akt and pharmacologic inhibitors of PI3K, mTOR, and S6K1, but not of MEK, suppressed the nuclear export of PTEN during the G(1)-S transition. The nuclear-cytoplasmic trafficking of exogenous PTEN is likewise regulated by the PI3K cascade in PTEN-null U251MG cells. The nuclear export of PTEN could also be blocked by short interfering RNA to S6K1/2. In addition, PTEN interacts with both S6K1 and S6K2. Taken together, our findings strongly indicate that activation of the PI3K/Akt/mTOR/S6K cascade, specifically S6K1/2, is pivotal in regulating the subcellular localization of PTEN. This scenario exemplifies a reciprocal regulation between PI3K and PTEN that defines a novel negative-feedback loop in cell cycle progression.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo
6.
Mol Cell Biol ; 25(14): 6211-24, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15988030

RESUMO

The tumor suppressor gene PTEN is a phosphoinositide phosphatase that is inactivated by deletion and/or mutation in diverse human tumors. Wild-type PTEN is expressed both in the cytoplasm and nucleus in normal cells, with a preferential nuclear localization in differentiated or resting cells. To elucidate the relationship between PTEN's subcellular localization and its biologic activities, we constructed different PTEN mutants that targeted PTEN protein into different subcellular compartments. Our data show that the subcellular localization patterns of a PTEN (deltaPDZB) mutant versus a G129R phosphatase mutant were indistinguishable from those of wild-type PTEN. In contrast, the Myr-PTEN mutant demonstrated an enhanced association with the cell membrane. We found that nuclear PTEN alone is capable of suppressing anchorage-independent growth and facilitating G1 arrest in U251MG cells without inhibiting Akt activity. Nuclear compartment-specific PTEN-induced growth suppression is dependent on possessing a functional lipid phosphatase domain. In addition, the down-regulation of p70S6K could be mediated, at least in part, through activation of AMP-activated protein kinase in an Akt-independent fashion. Introduction of a constitutively active mutant of Akt, Akt-DD, only partially rescues nuclear PTEN-mediated growth suppression. Our collective results provide the first direct evidence that PTEN can contribute to G1 growth arrest through an Akt-independent signaling pathway.


Assuntos
Núcleo Celular/enzimologia , Regulação para Baixo , Fase G1/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Núcleo Celular/química , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Fase G1/genética , Humanos , Camundongos , Mutação , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA