Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Med ; 22(1): 74, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369520

RESUMO

BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.


Assuntos
Esclerose Lateral Amiotrófica , Neoplasias , Neuregulina-1 , Receptor ErbB-4 , Humanos , Esclerose Lateral Amiotrófica/genética , Neoplasias/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transdução de Sinais
2.
medRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425721

RESUMO

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS). We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the user from a vocabulary of 6 keywords originally designed to allow intuitive selection of items on a communication board. Our results show for the first time that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words that are intelligible to human listeners while preserving the participants voice profile.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37288776

RESUMO

ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here, we review caffeine which has plausible mechanisms for slowing ALS progression. However, pre-clinical studies are contradictory, and a large case series showed no relationship between caffeine intake and ALS progression rate. While low doses of caffeine are safe and inexpensive, higher doses can cause serious side effects. At this time, we cannot endorse caffeine as a treatment to slow ALS progression.

4.
Mol Neurodegener ; 17(1): 8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012575

RESUMO

BACKGROUND: Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. METHODS: We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. RESULTS: We generate highly pure and functional mRNA-induced MNs (miMNs) from control and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect that was also found in the glutamate-induced miMN neurotoxicity model. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. CONCLUSIONS: This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Edaravone/metabolismo , Edaravone/farmacologia , Edaravone/uso terapêutico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/uso terapêutico , RNA Mensageiro/metabolismo , Transdução de Sinais
5.
Neurosci Lett ; 755: 135911, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33892003

RESUMO

Amongst the most important discoveries in ALS pathobiology are the works demonstrating that multiple cell types contribute to disease onset and progression. However, a significant limitation in ALS research is the inability to obtain tissues from ALS patient brain and spinal cord during the course of the disease. In vivo modeling has provided insights into the role of these cell subtypes in disease onset and progression. However, in vivo models also have shortcomings, including the reliance on a limited number of models based upon hereditary forms of the disease. Therefore, using human induced pluripotent stem cells (iPSC) reprogrammed from somatic cells of ALS patients, with both hereditary and sporadic forms of the disease, and differentiated into cell subtypes of both the central nervous system (CNS) and peripheral nervous system (PNS), have become powerful complementary tools for investigating basic mechanisms of disease as well as a platform for drug discovery. Motor neuron and other neuron subtypes, as well as non-neuronal cells have been differentiated from human iPSC and studied for their potential contributions to ALS pathobiology. As iPSC technologies have advanced, 3D modeling with multicellular systems organised in microfluidic chambers or organoids are the next step in validating the pathways and therapeutic targets already identified. Precision medicine approaches with iPSC using either traditional strategies of screening drugs that target a known pathogenic mechanism as well as "blind-to-target" drug screenings that allow for patient stratification based on drug response rather than clinical characteristics are now being employed.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco/métodos , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Técnicas de Reprogramação Celular/tendências , Fármacos do Sistema Nervoso Central/administração & dosagem , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Transplante de Células-Tronco/tendências
6.
J Neuropathol Exp Neurol ; 79(3): 266-276, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999342

RESUMO

For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Cerebelo/metabolismo , Córtex Motor/metabolismo , Proteínas de Neoplasias/metabolismo , Medula Espinal/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/análise , Adulto , Idoso , Astrócitos/metabolismo , Astrócitos/patologia , Cerebelo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/patologia , Proteínas de Neoplasias/análise , Medula Espinal/patologia
7.
Exp Neurol ; 323: 113091, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678350

RESUMO

Neurotrophic factors as candidates for ALS therapeutics have previously been studied in the context of attempts to slow disease progression. For a variety of reasons, clinical trials of neurotrophic factors have failed to show efficacy in ALS patients. Previous studies in Parkinson's Disease (PD) models have shown promise with the use of recombinant adeno-associated virus serotype-2 (rAAV2)-neurturin (NRTN) [AAV2-NRTN] providing neuroprotection and behavioral improvements in preclinical models which subsequently resulted in several clinical studies in patients with PD. Given that this neurotrophic compound has not been studied in the context of ALS, we conducted a study of AAV2-NRTN to assess the preclinical safety, tolerability, biodistribution, and efficacy of this compound in an ALS mouse model. SOD1G93A mice were injected with AAV2-NRTN intraspinally at several doses into the cervical spinal cord at 60 days of age. NRTN expression was noted in motor neurons (MNs) of the targeted cervical spinal cord as well as in their neuromuscular junction projections but not in the lumbar spinal cord, which was not targeted. Neuropathologically, a dose-dependent neuroprotective effect was seen in cervical MNs and neuromuscular junctions that was reflected in a slowing of forelimb grip strength decline. As expected, this neuroprotection was found to be focal and was not seen beyond the immediate region of injection. Overall, there were no increases in morbidity, changes in serum chemistries or blood counts and no cases of drug-related mortality. Because there is a broad clinical experience for this compound, these data provide evidence to support further investigation of AAV2-NRTN as a potential ALS therapeutic.


Assuntos
Esclerose Lateral Amiotrófica , Técnicas de Transferência de Genes , Neurônios Motores/metabolismo , Neurturina/administração & dosagem , Animais , Medula Cervical/metabolismo , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Parvovirinae , Transdução Genética
8.
Stem Cells Transl Med ; 8(4): 355-365, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30618148

RESUMO

One of the fundamental limitations in assessing potential efficacy in Central Nervous System (CNS) transplantation of stem cells is the capacity for monitoring cell survival and migration noninvasively and longitudinally. Human glial-restricted progenitor (hGRP) cells (Q-Cells) have been investigated for their utility in providing neuroprotection following transplantation into models of amyotrophic lateral sclerosis (ALS) and have been granted a Food and Drug Administration (FDA) Investigational New Drug (IND) for intraspinal transplantation in ALS patients. Furthermore, clinical development of these cells for therapeutic use will rely on the ability to track the cells using noninvasive imaging methodologies as well as the verification that the transplanted GRPs have disease-relevant activity. As a first step in development, we investigated the use of a perfluorocarbon (PFC) dual-modal (19 F magnetic resonance imaging [MRI] and fluorescence) tracer agent to label Q-Cells in culture and following spinal cord transplantation. PFCs have a number of potential benefits that make them appealing for clinical use. They are quantitative, noninvasive, biologically inert, and highly specific. In this study, we developed optimized PFC labeling protocols for Q-Cells and demonstrate that PFCs do not significantly alter the glial identity of Q-Cells. We also show that PFCs do not interfere with the capacity for differentiation into astrocytes either in vitro or following transplantation into the ventral horn of the mouse spinal cord, and can be visualized in vivo by hot spot 19 F MRI. These studies provide a foundation for further preclinical development of PFCs within the context of evaluating Q-Cell transplantation in the brain and spinal cord of future ALS patients using 19 F MRI. Stem Cells Translational Medicine 2019;8:355-365.


Assuntos
Fluorocarbonos/administração & dosagem , Neuroglia/citologia , Células-Tronco/citologia , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/terapia , Animais , Astrócitos/citologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Imagem por Ressonância Magnética de Flúor-19/métodos , Humanos , Masculino , Camundongos , Medula Espinal/citologia , Medula Espinal/diagnóstico por imagem , Transplante de Células-Tronco/métodos
9.
Adv Neurobiol ; 15: 163-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674981

RESUMO

ALS is a relentless neurodegenerative disease in which motor neurons are the susceptible neuronal population. Their death results in progressive paresis of voluntary and respiratory muscles. The unprecedented rate of discoveries over the last two decades have broadened our knowledge of genetic causes and helped delineate molecular pathways. Here we critically review ALS epidemiology, genetics, pathogenic mechanisms, available animal models, and iPS cell technologies with a focus on their translational therapeutic potential. Despite limited clinical success in treatments to date, the new discoveries detailed here offer new models for uncovering disease mechanisms as well as novel strategies for intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Demência Frontotemporal/epidemiologia , Demência Frontotemporal/fisiopatologia , Genes Modificadores/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores/epidemiologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/fisiopatologia , Pesquisa Translacional Biomédica , Ubiquitinas/genética
10.
Adv Neurobiol ; 15: 191-210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674982

RESUMO

ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Demência Frontotemporal/terapia , Terapia Genética , Fármacos Neuroprotetores/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Riluzol/uso terapêutico , Transplante de Células-Tronco , Esclerose Lateral Amiotrófica/fisiopatologia , Progressão da Doença , Terapia por Exercício , Demência Frontotemporal/fisiopatologia , Humanos , Doença dos Neurônios Motores/fisiopatologia , Doença dos Neurônios Motores/terapia , Ventilação não Invasiva , Apoio Nutricional , Fenótipo
11.
Stem Cell Reports ; 8(4): 843-855, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28366455

RESUMO

Astrocytes from familial amyotrophic lateral sclerosis (ALS) patients or transgenic mice are toxic specifically to motor neurons (MNs). It is not known if astrocytes from sporadic ALS (sALS) patients cause MN degeneration in vivo and whether the effect is specific to MNs. By transplanting spinal neural progenitors, derived from sALS and healthy induced pluripotent stem cells (iPSCs), into the cervical spinal cord of adult SCID mice for 9 months, we found that differentiated human astrocytes were present in large areas of the spinal cord, replaced endogenous astrocytes, and contacted neurons to a similar extent. Mice with sALS but not non-ALS cells showed reduced non-MNs numbers followed by MNs in the host spinal cord. The surviving MNs showed reduced inputs from inhibitory neurons and exhibited disorganized neurofilaments and aggregated ubiquitin. Correspondingly, mice with sALS but not non-ALS cells showed declined movement deficits. Thus, sALS iPSC-derived astrocytes cause ALS-like degeneration in both MNs and non-MNs.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Neurônios Motores/patologia , Medula Espinal/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Sinapses/patologia
12.
Exp Neurol ; 289: 96-102, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28038988

RESUMO

Neural stem cells (NSCs) are being investigated as a possible treatment for amyotrophic lateral sclerosis (ALS) through intraspinal transplantation, but no longitudinal imaging studies exist that describe the survival of engrafted cells over time. Allogeneic firefly luciferase-expressing murine NSCs (Luc+-NSCs) were transplanted bilaterally (100,000 cells/2µl) into the cervical spinal cord (C5) parenchyma of pre-symptomatic (63day-old) SOD1G93A ALS mice (n=14) and wild-type age-matched littermates (n=14). Six control SOD1G93A ALS mice were injected with saline. Mice were immunosuppressed using a combination of tacrolimus+sirolimus (1mg/kg each, i.p.) daily. Compared to saline-injected SOD1G93A ALS control mice, a transient improvement (p<0.05) in motor performance (rotarod test) was observed after NSC transplantation only at the early disease stage (weeks 2 and 3 post-transplantation). Compared to day one post-transplantation, there was a significant decline in bioluminescent imaging (BLI) signal in SOD1G93A ALS mice at the time of disease onset (71.7±17.9% at 4weeks post-transplantation, p<0.05), with a complete loss of BLI signal at endpoint (120day-old mice). In contrast, BLI signal intensity was observed in wild-type littermates throughout the entire study period, with only a 41.4±8.7% decline at the endpoint. In SOD1G93A ALS mice, poor cell survival was accompanied by accumulation of mature macrophages and the presence of astrogliosis and microgliosis. We conclude that the disease progression adversely affects the survival of engrafted murine Luc+-NSCs in SOD1G93A ALS mice as a result of the hostile ALS spinal cord microenvironment, further emphasizing the challenges that face successful cell therapy of ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/cirurgia , Células-Tronco Neurais/transplante , Esclerose Lateral Amiotrófica/genética , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Progressão da Doença , Embrião de Mamíferos , Seguimentos , Imunossupressores/farmacologia , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Transtornos Psicomotores/etiologia , Transtornos Psicomotores/cirurgia , Sirolimo/farmacologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/cirurgia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tacrolimo/farmacologia , Transplante Homólogo
13.
Glia ; 64(8): 1298-313, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27158936

RESUMO

The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
14.
Glia ; 64(7): 1154-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27083773

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons in the CNS. Astrocytes play a critical role in disease progression of ALS. Astrocytes are interconnected through a family of gap junction proteins known as connexins (Cx). Cx43 is a major astrocyte connexin conducting crucial homeostatic functions in the CNS. Under pathological conditions, connexin expression and functions are altered. Here we report that an abnormal increase in Cx43 expression serves as one of the mechanisms for astrocyte-mediated toxicity in ALS. We observed a progressive increase in Cx43 expression in the SOD1(G93A) mouse model of ALS during the disease course. Notably, this increase in Cx43 was also detected in the motor cortex and spinal cord of ALS patients. Astrocytes isolated from SOD1(G93A) mice as well as human induced pluripotent stem cell (iPSC)-derived astrocytes showed an increase in Cx43 protein, which was found to be an endogenous phenomenon independent of neuronal co-culture. Increased Cx43 expression led to important functional consequences when tested in SOD1(G93A) astrocytes when compared to control astrocytes over-expressing wild-type SOD1 (SOD1(WT) ). We observed SOD1(G93A) astrocytes exhibited enhanced gap junction coupling, increased hemichannel-mediated activity, and elevated intracellular calcium levels. Finally, we tested the impact of increased expression of Cx43 on MN survival and observed that use of both a pan Cx43 blocker and Cx43 hemichannel blocker conferred neuroprotection to MNs cultured with SOD1(G93A) astrocytes. These novel findings show a previously unrecognized role of Cx43 in ALS-related motor neuron loss. GLIA 2016;64:1154-1169.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/fisiologia , Córtex Cerebral/patologia , Conexina 43/metabolismo , Regulação da Expressão Gênica/genética , Neurônios Motores/fisiologia , Medula Espinal/patologia , Trifosfato de Adenosina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Conexina 43/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Interleucina-1beta/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Peptídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
15.
Glia ; 64(1): 63-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26295203

RESUMO

Astrocytes are instrumental to major brain functions, including metabolic support, extracellular ion regulation, the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental, psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells. To overcome the difficulties of cell type heterogeneity during the differentiation process from iPSCs to astroglial cells (iPS astrocytes), we generated homogenous populations of iPS astrocytes using zinc-finger nuclease (ZFN) technology. Enhanced green fluorescent protein (eGFP) driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was inserted into the safe harbor adeno-associated virus integration site 1 (AAVS1) locus in disease and control-derived iPSCs. Astrocyte populations were enriched using Fluorescence Activated Cell Sorting (FACS) and after enrichment more than 99% of iPS astrocytes expressed mature astrocyte markers including GFAP, S100ß, NFIA and ALDH1L1. In addition, mature pure GFP-iPS astrocytes exhibited a well-described functional astrocytic activity in vitro characterized by neuron-dependent regulation of glutamate transporters to regulate extracellular glutamate concentrations. Engraftment of GFP-iPS astrocytes into rat spinal cord grey matter confirmed in vivo cell survival and continued astrocytic maturation. In conclusion, the generation of GFAP::GFP-iPS astrocytes provides a powerful in vitro and in vivo tool for studying astrocyte biology and astrocyte-driven disease pathogenesis and therapy.


Assuntos
Astrócitos/fisiologia , Engenharia Celular/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Animais , Astrócitos/transplante , Sobrevivência Celular/fisiologia , Células Cultivadas , Desoxirribonucleases , Dependovirus/genética , Fibroblastos/fisiologia , Genes Reporter , Vetores Genéticos , Substância Cinzenta/citologia , Substância Cinzenta/fisiologia , Substância Cinzenta/cirurgia , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/fisiologia , Medula Espinal/cirurgia , Dedos de Zinco
16.
Brain Res ; 1628(Pt B): 343-350, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26187754

RESUMO

ALS is a neurodegenerative disease with a prevalence rate of up to 7.4/100,000 and the overall risk of developing ALS over a lifetime is 1:400. Most patients die from respiratory failure following a course of progressive weakness. To date, only one traditional pharmaceutical agent-riluzole, has been shown to afford a benefit on survival but numerous pharmaceutical interventions have been studied in preclinical models of ALS without subsequent translation to patient efficacy. Despite the relative selectivity of motor neuron cell death, animal and tissue culture models of familial ALS suggest that non-neuronal cells significantly contribute to neuronal dysfunction and death. Early efforts to transplant stem cells had focused on motor neuron replacement. More practically for this aggressive neurodegenerative disease, recent studies, preclinical efforts, and early clinical trials have focused on the transplantation of neural stem cells, mesenchymal stem cells, or glial progenitors. Using transgenic mouse or rat models of ALS, a number of studies have shown neuroprotection through a variety of different mechanisms that have included neurotrophic factor secretion, glutamate transporter regulation, and modulation of neuroinflammation, among others. However, given that cell replacement could involve a number of biologically relevant factors, identifying the key pathway(s) that may contribute to neuroprotection remains a challenge. Nevertheless, given the abundant data supporting the interplay between non-neuronal cell types and motor neuron disease propagation, the replacement of disease-carrying host cells by normal cells may be sufficient to confer neuroprotection. Key preclinical issues that currently are being addressed include the most appropriate methods and routes for delivery of cells to disease-relevant regions of the neuraxis, cell survival and migration, and tracking the cells following transplantation. Central to the initial development of stem cell transplantation into patients with ALS is the demonstration that transplanted cells lack tumorigenicity and have the appropriate biodistribution to ensure the safety of ALS patients receiving these therapies. Here, we review preclinical and clinical studies focusing on the transplantation of neural and glial progenitor cells as a promising neuroprotective therapy for ALS. The rationale for stem cell transplantation for neuroprotection, proof-of-concept animal studies, and current challenges facing translation of these therapies to the clinic is presented. Lastly, we discuss advancements on the horizon including induced pluripotent stem cell technology and developments for cellular tracking and detection post-transplantation. With the safe completion of the first-in-human Phase I clinical trial for intraspinal stem cell transplantation for ALS in the United States, the time is ripe for stem cell therapies to be translated to the clinic and excitingly, evaluated for neuroprotection for ALS. This article is part of a Special Issue entitled SI: Neuroprotection.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Neuroglia/fisiologia , Neurônios/fisiologia , Transplante de Células-Tronco/métodos , Animais , Humanos
17.
Exp Neurol ; 271: 479-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216662

RESUMO

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor neurons at the diaphragm neuromuscular junction, and (3) functional diaphragm denervation as measured by recording of spontaneous EMGs and evoked compound muscle action potentials. Our findings demonstrate that hiPSA transplantation is a therapeutically-powerful approach for SCI.


Assuntos
Astrócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Traumatismos da Medula Espinal/cirurgia , Potenciais de Ação/fisiologia , Animais , Astrócitos/transplante , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Diafragma/fisiopatologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório , Feminino , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
18.
Exp Neurol ; 264: 188-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25523812

RESUMO

Although Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease, basic research studies have highlighted that astrocytes contribute to the disease process. Therefore, strategies which replace the diseased astrocyte population with healthy astrocytes may protect against motor neuron degeneration. Our studies have sought to evaluate astrocyte replacement using glial-restricted progenitors (GRPs), which are lineage-restricted precursors capable of differentiating into astrocytes after transplantation. The goal of our current study was to evaluate how transplantation to the diseased ALS spinal cord versus a healthy, wild-type spinal cord may affect human GRP engraftment and selected gene expression. Human GRPs were transplanted into the spinal cord of either an ALS mouse model or wild-type littermate mice. Mice were sacrificed for analysis at either the onset of disease course or at the endstage of disease. The transplanted GRPs were analyzed by immunohistochemistry and NanoString gene profiling which showed no gross differences in the engraftment or gene expression of the cells. Our data indicate that human glial progenitor engraftment and gene expression is independent of the neurodegenerative ALS spinal cord environment. These findings are of interest given that human GRPs are currently in clinical development for spinal cord transplantation into ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Regulação da Expressão Gênica/fisiologia , Neuroglia/fisiologia , Neuroglia/transplante , Transplante de Células-Tronco/métodos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Antígenos Nucleares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cadáver , Movimento Celular , Proliferação de Células/genética , Modelos Animais de Doenças , Feto , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Medula Espinal/metabolismo , Medula Espinal/patologia , Células-Tronco , Superóxido Dismutase/genética
19.
Mol Ther ; 23(3): 533-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492561

RESUMO

Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI.


Assuntos
Astrócitos/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diafragma/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Dependovirus/genética , Diafragma/patologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Nervo Frênico/lesões , Nervo Frênico/metabolismo , Nervo Frênico/patologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Transgenes
20.
Stem Cells Transl Med ; 3(5): 575-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24604284

RESUMO

The generation of human induced pluripotent stem cells (hiPSCs) represents an exciting advancement with promise for stem cell transplantation therapies as well as for neurological disease modeling. Based on the emerging roles for astrocytes in neurological disorders, we investigated whether hiPSC-derived astrocyte progenitors could be engrafted to the rodent spinal cord and how the characteristics of these cells changed between in vitro culture and after transplantation to the in vivo spinal cord environment. Our results show that human embryonic stem cell- and hiPSC-derived astrocyte progenitors survive long-term after spinal cord engraftment and differentiate to astrocytes in vivo with few cells from other lineages present. Gene profiling of the transplanted cells demonstrates the astrocyte progenitors continue to mature in vivo and upregulate a variety of astrocyte-specific genes. Given this mature astrocyte gene profile, this work highlights hiPSCs as a tool to investigate disease-related astrocyte biology using in vivo disease modeling with significant implications for human neurological diseases currently lacking animal models.


Assuntos
Astrócitos , Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Medula Espinal , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA