Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 10(5): 1429-1441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509389

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, and current standard therapy provides modest improvements in progression-free and overall survival of patients. Innate tumor resistance and presence of the blood-brain barrier (BBB) require the development of multi-modal therapeutic regimens. Previously, cytosine deaminase (CD)-expressing mesenchymal stem cells (MSC/CD) were found to exhibit anticancer activity with a wide therapeutic index by converting 5-fluorocytosine (5-FC), a nontoxic prodrug into 5-fluorouracil (5-FU), a potent anticancer drug. In this study, we evaluated the efficacy of MSC/CD in a multi-modal combination regimen with temozolomide (TMZ). Cell viability test, cell cycle, and normalized isobologram analyses were performed. In vivo anticancer effects were tested in a mouse orthotopic glioma model. TMZ and MSC/CD with 5-FC synergistically interacted and suppressed U87 glioma cell line growth in vitro. Combined treatment with TMZ and 5-FU increased cell cycle arrest and DNA breakage. In an orthotopic xenograft mouse model, treatment with TMZ alone suppressed tumor growth; however, this effect was more intense with MSC/CD transplantation followed by the sequential treatment with 5-FC and TMZ. Therefore, we propose that sequential treatment with 5-FC and MSC/CD can be used in patients with GBM during the immediate postoperative period to sensitize tumors to subsequent adjuvant chemo- and radiotherapy.

2.
Mol Cells ; 40(8): 598-605, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28835020

RESUMO

Human mesenchymal stem cells (MSCs) are currently being evaluated as a cell-based therapy for tissue injury and degenerative diseases. Recently, several methods have been suggested to further enhance the therapeutic functions of MSCs, including genetic modifications with tissue- and/or disease-specific genes. The objective of this study was to examine the efficiency and stability of transduction using an adenoviral vector in human MSCs. Additionally, we aimed to assess the effects of transduction on the proliferation and multipotency of MSCs. The results indicate that MSCs can be transduced by adenoviruses in vitro, but high viral titers are necessary to achieve high efficiency. In addition, transduction at a higher multiplicity of infection (MOI) was associated with attenuated proliferation and senescence-like morphology. Furthermore, transduced MSCs showed a diminished capacity for adipogenic differentiation while retaining their potential to differentiate into osteocytes and chondrocytes. This work could contribute significantly to clinical trials of MSCs modified with therapeutic genes.


Assuntos
Adenoviridae/metabolismo , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Adolescente , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Criança , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Mesoderma/citologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA