Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37897014

RESUMO

Immune dysregulation and cancer treatment may affect SARS-CoV-2 vaccination protection. Antibody production by B-cells play a vital role in the control and clearance of the SARS-CoV-2 virus. This study prospectively explores B-cell seroconversion following SARS-CoV-2 immunization in healthy individuals and non-small cell lung cancer (NSCLC) patients undergoing oncological treatment. 92 NSCLC patients and 27 healthy individuals' blood samples were collected after receiving any COVID-19 vaccine. Serum and mononuclear cells were isolated, and a serum surrogate virus neutralization test kit evaluated SARS-CoV-2 antibodies. B-cell subpopulations on mononuclear cells were characterized by flow cytometry. Patients were compared based on vaccination specifications and target mutation oncological treatment. A higher percentage of healthy individuals developed more SARS-CoV-2 neutralizing antibodies than NSCLC patients (63% vs. 54.3%; p = 0.03). NSCLC patients receiving chemotherapy (CTX) or tyrosine kinase inhibitors (TKIs) developed antibodies in 45.2% and 53.7%, of cases, respectively, showing an impaired antibody generation. CTX patients exhibited trends towards lower median antibody production than TKIs (1.0, IQR 83 vs. 38.23, IQR 89.22; p = 0.069). Patients receiving immunotherapy did not generate antibodies. A sub-analysis revealed that those with ALK mutations exhibited non-significant trends towards higher antibody titers (63.02, IQR 76.58 vs. 21.78, IQR 93.5; p = 0.1742) and B-cells quantification (10.80, IQR 7.52 vs. 7.22, IQR 3.32; p = 0.1382) against the SARS-CoV-2 spike protein than EGFR patients; nonetheless, these differences were not statistically significant. This study shows that antibodies against SARS-CoV-2 may be impaired in patients with NSCLC secondary to EGFR-targeted TKIs compared to ALK-directed treatment.

2.
Rheumatology (Oxford) ; 62(2): 775-784, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766810

RESUMO

OBJECTIVE: To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS: We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS: Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION: MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.


Assuntos
Células Supressoras Mieloides , Arginase/genética , Arginase/metabolismo , Interleucina-6/metabolismo , Antígeno B7-H1/metabolismo , Citocinas/metabolismo
3.
J Immunol Res ; 2022: 2909487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402623

RESUMO

The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.


Assuntos
Células-Tronco Hematopoéticas , Sepse , Animais , Hematopoese , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas , Sepse/metabolismo
4.
Clin Transl Med ; 11(11): e623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841707
5.
Front Immunol ; 12: 689966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566957

RESUMO

Background: Most of the explanatory and prognostic models of COVID-19 lack of a comprehensive assessment of the wide COVID-19 spectrum of abnormalities. The aim of this study was to unveil novel biological features to explain COVID-19 severity and prognosis (death and disease progression). Methods: A predictive model for COVID-19 severity in 121 patients was constructed by ordinal logistic regression calculating odds ratio (OR) with 95% confidence intervals (95% CI) for a set of clinical, immunological, metabolomic, and other biological traits. The accuracy and calibration of the model was tested with the area under the curve (AUC), Somer's D, and calibration plot. Hazard ratios with 95% CI for adverse outcomes were calculated with a Cox proportional-hazards model. Results: The explanatory variables for COVID-19 severity were the body mass index (BMI), hemoglobin, albumin, 3-Hydroxyisovaleric acid, CD8+ effector memory T cells, Th1 cells, low-density granulocytes, monocyte chemoattractant protein-1, plasma TRIM63, and circulating neutrophil extracellular traps. The model showed an outstanding performance with an optimism-adjusted AUC of 0.999, and Somer's D of 0.999. The predictive variables for adverse outcomes in COVID-19 were severe and critical disease diagnosis, BMI, lactate dehydrogenase, Troponin I, neutrophil/lymphocyte ratio, serum levels of IP-10, malic acid, 3, 4 di-hydroxybutanoic acid, citric acid, myoinositol, and cystine. Conclusions: Herein, we unveil novel immunological and metabolomic features associated with COVID-19 severity and prognosis. Our models encompass the interplay among innate and adaptive immunity, inflammation-induced muscle atrophy and hypoxia as the main drivers of COVID-19 severity.


Assuntos
COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto , Coagulação Sanguínea , Índice de Massa Corporal , COVID-19/sangue , COVID-19/imunologia , COVID-19/metabolismo , Citocinas/sangue , Armadilhas Extracelulares/imunologia , Feminino , Hemoglobinas/análise , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Atrofia Muscular , Neutrófilos/imunologia , Fenótipo , Prognóstico , Albumina Sérica Humana/análise , Linfócitos T/imunologia , Valeratos/sangue
6.
J Clin Endocrinol Metab ; 106(2): e534-e550, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33119067

RESUMO

CONTEXT: Follicle-stimulating hormone (FSH) plays an essential role in gonadal function. Loss-of-function mutations in the follicle-stimulating hormone receptor (FSHR) are an infrequent cause of primary ovarian failure. OBJECTIVE: To analyze the molecular physiopathogenesis of a novel mutation in the FSHR identified in a woman with primary ovarian failure, employing in vitro and in silico approaches, and to compare the features of this dysfunctional receptor with those shown by the trafficking-defective D408Y FSHR mutant. METHODS: Sanger sequencing of the FSHR cDNA was applied to identify the novel mutation. FSH-stimulated cyclic adenosine monophosphate (cAMP) production, ERK1/2 phosphorylation, and desensitization were tested in HEK293 cells. Receptor expression was analyzed by immunoblotting, receptor-binding assays, and flow cytometry. Molecular dynamics simulations were performed to determine the in silico behavior of the mutant FSHRs. RESULTS: A novel missense mutation (I423T) in the second transmembrane domain of the FSHR was identified in a woman with normal pubertal development but primary amenorrhea. The I423T mutation slightly impaired plasma membrane expression of the mature form of the receptor and severely impacted on cAMP/protein kinase A signaling but much less on ß-arrestin-dependent ERK1/2 phosphorylation. Meanwhile, the D408Y mutation severely affected membrane expression, with most of the FSH receptor located intracellularly, and both signal readouts tested. Molecular dynamics simulations revealed important functional disruptions in both mutant FSHRs, mainly the loss of interhelical connectivity in the D408Y FSHR. CONCLUSIONS: Concurrently, these data indicate that conformational differences during the inactive and active states account for the distinct expression levels, differential signaling, and phenotypic expression of the I423T and D408Y mutant FSHRs.


Assuntos
Insuficiência Ovariana Primária/genética , Receptores do FSH/genética , Adulto , Amenorreia/genética , Amenorreia/metabolismo , Substituição de Aminoácidos , Família , Feminino , Hormônio Foliculoestimulante/farmacologia , Células HEK293 , Humanos , Isoleucina/genética , Mutação com Perda de Função/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Insuficiência Ovariana Primária/metabolismo , Receptores do FSH/agonistas , Receptores do FSH/química , Receptores do FSH/metabolismo , Treonina/genética
7.
J Immunol Res ; 2020: 5692829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676508

RESUMO

Interleukin- (IL-) 17 is increased in acute myocardial infarction (AMI) and plays a key role in inflammatory diseases through its involvement in the activation of leukocytes. Here, we describe for the first time the effect of IL-17 in the migration and activation of monocyte subsets in patients during ST-segment elevation myocardial infarction (STEMI) and post-STEMI. We analyzed the circulating levels of IL-17 in patient plasma. A gradual increase in IL-17 was found in STEMI and post-STEMI patients. Additionally, IL-17 had a powerful effect on the recruitment of CD14++CD16+/CD14+CD16++ monocytes derived from patients post-STEMI compared with the monocytes from patients with STEMI, suggesting that IL-17 recruits monocytes with inflammatory activity post-STEMI. Furthermore, IL-17 increased the expression of TLR4 on CD14 + CD16 - and CD14++CD16+/CD14+CD16++ monocytes post-STEMI and might enhance the response to danger-associated molecular patterns post-STEMI. Moreover, IL-17 induced secretion of IL-6 from CD14++CD16- and CD14++CD16+/CD14+CD16++ monocytes both in STEMI and in post-STEMI, which indicates that IL-17 has an effect on the secretion of proinflammatory cytokines from monocytes during STEMI and post-STEMI. Overall, we demonstrate that in STEMI and post-STEMI, IL-17 is increased and induces the migration and activation of monocyte subsets, possibly contributing to the inflammatory response through TLR4 and IL-6 secretion.


Assuntos
Endotélio Vascular/metabolismo , Interleucina-17/metabolismo , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletrocardiografia , Endotélio Vascular/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de IgG/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
PLoS One ; 15(4): e0227849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343690

RESUMO

Understanding the mitotic DNA damage response (DDR) is critical to our comprehension of cancer, premature aging and developmental disorders which are marked by DNA repair deficiencies. In this study we use a micro-focused laser to induce DNA damage in selected mitotic chromosomes to study the subsequent repair response. Our findings demonstrate that (1) mitotic cells are capable of DNA repair as evidenced by DNA synthesis at damage sites, (2) Repair is attenuated when DNA-PKcs and ATM are simultaneously compromised, (3) Laser damage may permit the observation of previously undetected DDR proteins when damage is elicited by other methods in mitosis, and (4) Twenty five percent of mitotic DNA-damaged cells undergo a subsequent mitosis. Together these findings suggest that mitotic DDR is more complex than previously thought and may involve factors from multiple repair pathways that are better understood in interphase.


Assuntos
Quebras de DNA/efeitos da radiação , Reparo do DNA , DNA/biossíntese , Fase G1/genética , Mitose/genética , Animais , Linhagem Celular , DNA/genética , DNA/efeitos da radiação , Fase G1/efeitos da radiação , Humanos , Raios Infravermelhos/efeitos adversos , Lasers/efeitos adversos , Mitose/efeitos da radiação , Potoroidae
9.
Protein J ; 39(3): 224-231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300914

RESUMO

Class-I restricted T cell-associated molecule (CRTAM) is a member of the immunoglobulin superfamily, and it is closely related to nectin-like protein. CRTAM is expressed in activated CD8 T cells, NKT cells, NK cells and in a subpopulation CD4 T cells. In this study, we produce as recombinant proteins, the Ig-domains of CRTAM (IgV-IgC), the IgV, and the IgC. These proteins were successfully purified in the soluble fraction only if the stalk region was included. The recombinant CRTAM recognizes its ligand nectin-like 2 in a cell-free system. We also demonstrate that the IgC domain of CRTAM is recognized by the anti-hCRTAM monoclonal antibody C8 with a 0.62 nM affinity. In conclusion, the stalk region of CRTAM provides solubility for the expression of its Ig-domains as recombinant proteins.


Assuntos
Molécula 1 de Adesão Celular/genética , Sistema Livre de Células/química , Domínios de Imunoglobulina/genética , Imunoglobulinas/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Sítios de Ligação , Molécula 1 de Adesão Celular/imunologia , Molécula 1 de Adesão Celular/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hibridomas/química , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
10.
Rev Alerg Mex ; 64(4): 463-476, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-29249108

RESUMO

Cells release several biomolecules to the extracellular environment using them as a communication alternative with neighbor cells. Besides these molecules, cells also release more complex elements, like vesicles; structures composed of a lipidic bilayer with transmembrane proteins that protect a hydrophilic content. Exosomes are a small subtype of vesicles (30-150 nm), produced by many cell types, such as tumor cells, neurons, epithelial cells and immune cells. Included in this last group, antigen presenting cells produce exosomes that contain different types of molecules depending on their activation and/or maturation state. In recent years there has been an exponential interest in exosomes due to the recent evidences that show the immunomodulatory properties of these vesicles and therefore, their great potential in diagnostic approaches and development of therapies for different inflammation-associated pathologies.


Las células liberan biomoléculas de diversa naturaleza a su entorno para comunicarse con las células vecinas. Además de dichas moléculas, secretan también elementos más complejos como las vesículas; estructuras compuestas por bicapas lipídicas con proteínas transmembranales que encierran un contenido hidrofílico. Los exosomas son un subtipo pequeño de estas vesículas (de 30 a 150 nm), producidos por una amplia variedad de tipos celulares incluyendo las neuronas, células tumorales, células epiteliales y células del sistema inmunológico. De entre estas últimas, las células presentadoras de antígeno se han caracterizado como productoras de exosomas con contenido variable, tanto en condiciones de reposo como en aquellas que derivan de su estimulación o maduración. En los últimos años, el estudio de los exosomas ha aumentado debido a que se ha demostrado que dichas vesículas poseen propiedades inmunomoduladoras, razón por la que ostentan un gran potencial en aplicaciones de diagnóstico y desarrollo de terapias en diferentes patologías con componentes inflamatorios.


Assuntos
Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Exossomos/imunologia , Imunidade Adaptativa , Complexo Multienzimático de Ribonucleases do Exossomo/imunologia , Humanos
11.
Immunol Res ; 62(1): 89-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752457

RESUMO

The X-linked hyper-IgM syndrome (XHIGM) is the most common form of HIGM. Patients are clinically diagnosed on the basis of recurrent sinopulmonary infections, accompanied with low levels of IgG and IgA, normal to elevated levels of IgM, and the presence of peripheral B cells. Here, we have reported a novel deletion of four nucleotides in CD40LG exon 3, c.375_378delCAAA, which led to a frameshift mutation with a premature stop codon, p.Asn101*126. The deletion resulted in a truncated protein, in which majority of the extracellular domain was lost. However, detection of surface CD40L was still possible as the intracellular, transmembrane, and part of the extracellular domains were not affected. This indicated that this mutation did not affect protein stability and that immunodetection of CD40L expression is not enough for the diagnosis of XHIGM. Our study strongly suggests that genetic diagnosis for XHIGM should always be performed when clinical data support this diagnosis and CD40L protein is present.


Assuntos
Ligante de CD40/genética , Ligante de CD40/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/metabolismo , Animais , Sequência de Bases , Ligante de CD40/imunologia , Células CHO , Cricetulus , Mutação da Fase de Leitura , Humanos , Lactente , Leucócitos Mononucleares , Deleção de Sequência , Transfecção
12.
Clin Immunol ; 149(3): 388-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24211713

RESUMO

We have identified Tspan33 as a gene encoding a transmembrane protein exhibiting a restricted expression pattern including expression in activated B cells. TSPAN33 is a member of the tetraspanin family. TSPAN33 is not expressed in resting B cells, but is strongly induced in primary human B cells following activation. Human 2E2 cells, a Burkitt's lymphoma-derived B cell model of activation and differentiation, also upregulate TSPAN33 upon activation. TSPAN33 is expressed in several lymphomas including Hodgkin's and Diffuse large B cell lymphoma. TSPAN33 is also expressed in some autoimmune diseases where B cells participate in the pathology, including rheumatoid arthritis patients, systemic lupus erythematosus (SLE), and in spleen B cells from MRL/Fas(lpr/lpr) mice (a mouse model of SLE). We conclude that TSPAN33 may be used as a diagnostic biomarker or as a target for therapeutic antibodies for treatment of certain B cell lymphomas or autoimmune diseases.


Assuntos
Linfócitos B/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/imunologia , Tetraspaninas/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Cultura Primária de Células , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Tetraspaninas/genética
13.
Immunol Rev ; 256(1): 190-202, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117822

RESUMO

Myosins comprise a family of motor proteins whose role in muscle contraction and motility in a large range of eukaryotic cells has been widely studied. Although these proteins have been characterized extensively and much is known about their function in different cellular compartments, little is known about these molecules in hematopoietic cells. Myosins expressed by cells from the immune response are involved in maintaining plasma membrane tension, moving and secreting vesicles, endo- and exocytotic processes, and promoting the adhesion and motility of cells. Herein, we summarize our current understanding of class I myosins in B cells, with an emphasis on the emerging roles of these molecular motors in immune functions.


Assuntos
Linfócitos B/fisiologia , Miosina Tipo I/metabolismo , Animais , Apresentação de Antígeno/imunologia , Movimento Celular , Humanos , Sinapses Imunológicas/fisiologia , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA