Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 14: 1178-1199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090731

RESUMO

Motivated by the potential of focused-electron-beam-induced deposition (FEBID) in the fabrication of functional gold nanostructures for application in plasmonic and detector technology, we conducted a comprehensive study on [Au(CH3)2Cl]2 as a potential precursor for such depositions. Fundamental electron-induced dissociation processes were studied under single collision conditions, and the composition and morphology of FEBID deposits fabricated in an ultrahigh-vacuum (UHV) chamber were explored on different surfaces and at varied beam currents. In the gas phase, dissociative ionization was found to lead to significant carbon loss from this precursor, and about 50% of the chlorine was on average removed per dissociative ionization incident. On the other hand, in dissociative electron attachment, no chlorine was removed from the parent molecule. Contrary to these observations, FEBID in the UHV setup was found to yield a quantitative loss and desorption of the chlorine from the deposits, an effect that we attribute to electron-induced secondary and tertiary reactions in the deposition process. We find this precursor to be stable at ambient conditions and to have sufficient vapor pressure to be suitable for use in HV instruments. More importantly, in the UHV setup, FEBID with [Au(CH3)2Cl]2 yielded deposits with high gold content, ranging from 45 to 61 atom % depending on the beam current and on the cleanliness of the substrates surface.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957158

RESUMO

Focused-electron-beam-induced deposition (FEBID) is a powerful nanopatterning technique where electrons trigger the local dissociation of precursor molecules, leaving a deposit of non-volatile dissociation products. The fabrication of high-purity gold deposits via FEBID has significant potential to expand the scope of this method. For this, gold precursors that are stable under ambient conditions but fragment selectively under electron exposure are essential. Here, we investigated the potential gold precursor (CH3)AuP(CH3)3 using FEBID under ultra-high vacuum (UHV) and spectroscopic characterization of the corresponding metal-containing deposits. For a detailed insight into electron-induced fragmentation, the deposit's composition was compared with the fragmentation pathways of this compound through dissociative ionization (DI) under single-collision conditions using quantum chemical calculations to aid the interpretation of these data. Further comparison was made with a previous high-vacuum (HV) FEBID study of this precursor. The average loss of about 2 carbon and 0.8 phosphor per incident was found in DI, which agreed well with the carbon content of the UHV FEBID deposits. However, the UHV deposits were found to be as good as free of phosphor, indicating that the trimethyl phosphate is a good leaving group. Differently, the HV FEBID experiments showed significant phosphor content in the deposits.

3.
ACS Nano ; 12(4): 3825-3835, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29537816

RESUMO

We demonstrate that surface-anchored metal-organic frameworks (SURMOFs) are extraordinary well-suited as resists for high-resolution focused electron beam induced processing (FEBIP) techniques. The combination of such powerful lithographic protocols with the huge versatility of MOF materials are investigated in respect to their potential in nanostructures fabrication. The applied FEBIP methods rely on the local decomposition of Fe(CO)5 and Co(CO)3NO as precursors, either by the direct impact of the focused electron beam (electron beam induced deposition, EBID) or through the interaction of the precursor molecules with preirradiated/activated SURMOF areas (electron beam induced surface activation, EBISA). We demonstrate the huge potential of the approach for two different types of MOFs (HKUST-1 and Zn-DPDCPP). Our "surface science" approach to FEBIP, yields well-defined deposits with each investigated precursor/SURMOF combination. Local Auger electron spectroscopy reveals clean iron deposits from Fe(CO)5; deposits from Co(CO)3NO contain cobalt, nitrogen, and oxygen. EBISA experiments were successful with Fe(CO)5. Remarkably EBISA with Co(CO)3NO does not result in deposit formation on both resists, making the process chemically selective. Most importantly we demonstrate the fabrication of "nested-L" test structures with Fe(CO)5 on HKUST-1 with extremely narrow line widths of partially less than 8 nm, due to reduced electron proximity effects within the MOF-based resists. Considering that the actual diameter of the electron beam was larger than 6 nm, we see a huge potential for significant reduction of the structure sizes. In addition, the role and high potential of loading and transport of the precursor molecules within the porous SURMOF materials is discussed.

4.
J Phys Chem C Nanomater Interfaces ; 117(34): 17674-17679, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24159366

RESUMO

Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring.

5.
Phys Chem Chem Phys ; 13(38): 17333-8, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21881651

RESUMO

Upon exposure to Fe(CO)(5), the formation of pure cubic Fe nanocrystals with dimensions up to ~75 nm is reported on ultra-thin SiO(x) films (thickness ≈ 0.5 nm) on Si(001), which have been prepared in situ under UHV conditions. The active centers for initial decomposition of Fe(CO)(5) resulting in the growth of the Fe clusters are proposed to be SiO sites. After nucleation at these sites, further crystal growth is observed due to autocatalytic dissociation of Fe(CO)(5) at room temperature. The density of the Fe clusters can be increased by irradiating the surface with a focused electron beam (15 keV) prior to gas exposure. The formation of the active SiO sites upon electron irradiation is attributed to oxygen desorption via the Knotek-Feibelman mechanism.

6.
Langmuir ; 25(19): 11930-9, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19630434

RESUMO

We explore the electron-beam-induced deposition (EBID) of iron pentacarbonyl, Fe(CO)5, in ultrahigh vacuum (UHV) on clean and modified Rh(110) surfaces by scanning electron microscopy (SEM), scanning Auger microscopy (SAM), and local Auger electron spectroscopy (AES). In EBID a highly focused electron beam is used to locally decompose the iron pentacarbonyl precursor molecules with the goal to generate pure iron nanostructures. It is demonstrated that the selectivity of the process strongly depends on the surface properties. On a perfect, clean Rh(110) surface almost no selectivity is observed; i.e., deposition of Fe is found on irradiated and nonirradiated surface regions due to catalytic decomposition of the Fe(CO)5. However, on a structurally nonperfect Rh(110) surface and on a Ti-precovered Rh(110) surface high selectivity is found; i.e., Fe deposits are primarily formed in irradiated regions. The role of catalytic and autocatalytic growth of iron on clean Rh respective iron deposits is discussed. The purity of the Fe deposits was always very high (>88%). It is demonstrated that the deposited Fe structures can be selectively oxidized to iron oxide by exposure to oxygen. Furthermore, attempts to write Fe line deposits were also successful, and line diameters smaller than 25 nm could be achieved.

7.
Small ; 4(6): 841-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18457333

RESUMO

The generation of nanostructures with arbitrary shapes and well-defined chemical composition is still a challenge and targets the core of the fast-growing field of nanotechnology. One approach is the maskless nanofabrication technique of electron-beam-induced deposition (EBID). Up to now, the purity of these EBID structures has been rather poor. Here we demonstrate that by performing the EBID process solely under ultrahigh vacuum conditions, the lithographic generation of iron nanostructures on Si(100) with an unprecedented purity of higher than 95% is possible. One particular new aspect is the formation of EBID deposits with reduced size in a strain-induced diffusive process, resulting in deposits significantly smaller than 10 nm.


Assuntos
Elétrons , Ferro/química , Nanoestruturas , Vácuo , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA