Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 418, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172585

RESUMO

Boron Neutron Capture Therapy (BNCT) is a radiotherapy technique based on the enrichment of tumour cells with suitable 10-boron concentration and on subsequent neutron irradiation. Low-energy neutron irradiation produces a localized deposition of radiation dose caused by boron neutron capture reactions. Boron is vehiculated into tumour cells via proper borated formulations, able to accumulate in the malignancy more than in normal tissues. The neutron capture releases two high-LET charged particles (i.e., an alpha particle and a lithium ion), losing their energy in a distance comparable to the average dimension of one cell. Thus BNCT is selective at the cell level and characterized by high biological effectiveness. As the radiation field is due to the interaction of neutrons with the components of biological tissues and with boron, the dosimetry requires a formalism to express the absorbed dose into photon-equivalent units. This work analyzes a clinical case of an adenoid cystic carcinoma treated with carbon-ion radiotherapy (CIRT), located close to optic nerve and deep-seated as a practical example of how to apply the formalism of BNCT photon isoeffective dose and how to evaluate the BNCT dose distribution against CIRT. The example allows presenting different dosimetrical and radiobiological quantities and drawing conclusions on the potential of BNCT stemming on the clinical result of the CIRT. The patient received CIRT with a dose constraint on the optic nerve, affecting the peripheral part of the Planning Target Volume (PTV). After the treatment, the tumour recurred in this low-dose region. BNCT was simulated for the primary tumour, with the goal to calculate the dose distribution in isoeffective units and a Tumour Control Probability (TCP) to be compared with the one of the original treatment. BNCT was then evaluated for the recurrence in the underdosed region which was not optimally covered by charged particles due to the proximity of the optic nerve. Finally, a combined treatment consisting in BNCT and carbon ion therapy was considered to show the consistency and the potential of the model. For the primary tumour, the photon isoeffective dose distribution due to BNCT was evaluated and the resulted TCP was higher than that obtained for the CIRT. The formalism produced values that are consistent with those of carbon-ion. For the recurrence, BNCT dosimetry produces a similar TCP than that of primary tumour. A combined treatment was finally simulated, showing a TCP comparable to the BNCT-alone with overall dosimetric advantage in the most peripheral parts of the treatment volume. Isoeffective dose formalism is a robust tool to analyze BNCT dosimetry and to compare it with the photon-equivalent dose calculated for carbon-ion treatment. This study introduces for the first time the possibility to combine the dosimetry obtained by two different treatment modalities, showing the potential of exploiting the cellular targeting of BNCT combined with the precision of charged particles in delivering an homogeneous dose distribution in deep-seated tumours.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Carbono , Nêutrons
2.
Phys Med ; 89: 282-292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474326

RESUMO

PURPOSE: Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the selective damage caused by the products of neutron capture in 10B to tumour cells. BNCT dosimetry strongly depends on the parameters of the dose calculation models derived from radiobiological experiments. This works aims at determining an adequate dosimetry for in-vitro experiments involving irradiation of monolayer-cultured cells with photons and BNCT and assessing its impact on clinical settings. M&M: Dose calculations for rat osteosarcoma UMR-106 and human metastatic melanoma Mel-J cell survival experiments were performed using MCNP, transporting uncharged particles for KERMA determinations, and secondary particles (electrons, protons, 14C, 4He and 7Li) to compute absorbed dose in cultures. Dose-survival curves were modified according to the dose correction factors determined from computational studies. New radiobiological parameters of the photon isoeffective dose models for osteosarcoma and metastatic melanoma tumours were obtained. Dosimetry implications considering cutaneous melanoma patients treated in Argentina with BNCT were assessed and discussed. RESULTS: KERMA values for the monolayer-cultured cells overestimate absorbed doses of radiation components of interest in BNCT. Detailed dose calculations for the osteosarcoma irradiation increased the relative biological effectiveness factor RBE1% of the neutron component in more than 30%. The analysis based on melanoma cases reveals that the use of survival curves based on KERMA leads to an underestimation of the tumour doses delivered to patients. CONCLUSIONS: Considering detailed dose calculation for in-vitro experiments significantly impact on the prediction of the tumor control in patients. Therefore, proposed methods are clinically relevant.


Assuntos
Terapia por Captura de Nêutron de Boro , Melanoma , Neoplasias Cutâneas , Animais , Humanos , Masculino , Melanoma/radioterapia , Radiometria , Ratos , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA