Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 45, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746928

RESUMO

Gemcitabine is a first-line treatment agent for pancreatic ductal adenocarcinoma (PDAC). Contributing to its cytotoxicity, this chemotherapeutic agent is primarily a DNA replication inhibitor that also induces DNA damage. However, its therapeutic effects are limited owing to chemoresistance. Evidence in the literature points to a role for autophagy in restricting the efficacy of gemcitabine. Autophagy is a catabolic process in which intracellular components are delivered to degradative organelles lysosomes. Interfering with this process sensitizes PDAC cells to gemcitabine. It is consequently inferred that autophagy and lysosomal function need to be tightly regulated to maintain homeostasis and provide resistance to environmental stress, such as those imposed by chemotherapeutic drugs. However, the mechanism(s) through which gemcitabine promotes autophagy remains elusive, and the impact of gemcitabine on lysosomal function remains largely unexplored. Therefore, we applied complementary approaches to define the mechanisms triggered by gemcitabine that support autophagy and lysosome function. We found that gemcitabine elicited ERK-dependent autophagy in PDAC cells, but did not stimulate ERK activity or autophagy in non-tumoral human pancreatic epithelial cells. Gemcitabine also promoted transcription factor EB (TFEB)-dependent lysosomal function in PDAC cells. Indeed, treating PDAC cells with gemcitabine caused expansion of the lysosomal network, as revealed by Lysosome associated membrane protein-1 (LAMP1) and LysoTracker staining. More specific approaches have shown that gemcitabine promotes the activity of cathepsin B (CTSB), a cysteine protease playing an active role in lysosomal degradation. We showed that lysosomal function induced by gemcitabine depends on TFEB, the master regulator of autophagy and lysosomal biogenesis. Interfering with TFEB function considerably limited the clonogenic growth of PDAC cells and hindered the capacity of TFEB-depleted PDAC cells to develop orthotopic tumors.

2.
Ann Surg ; 278(1): e5-e12, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904023

RESUMO

OBJECTIVE: This study aimed to assess the relationship between surgeons' leadership style and team behavior in the hybrid operating room through video coding. Secondly, possible fluctuations possible fluctuations in leadership styles and team behavior during operative phases were studied. BACKGROUND: Leadership is recognized as a key component to successful team functioning in high-risk industries. The 'full range of leadership' theory is commonly used to evaluate leadership, marking transformational, transactional, and passive. Few studies have examined the effects of these leadership styles on team behavior in surgery and/or their fluctuations during surgery. METHODS: A single-center study included patients planned for routine endovascular procedures. A medical data capture system was used to allow post hoc video coding through Behavior Anchored Rating Scales. Multilevel statistical analysis was performed to assess possible correlations between leadership style and 3 team behavior indicators (speaking up, knowledge sharing, and collaboration) on an operative phase level. RESULTS: Twenty-two cases were analyzed (47 hours recording). Transformational leadership is positively related to the extent to which team members work together (γ=0.20, P <0.001), share knowledge (γ=0.45, P <0.001), and speak up (γ=0.64, P <0.001). Passive leadership is significantly positively correlated with speaking up (γ=0.29, P =0.004). Leadership style and team behavior clearly fluctuate during a procedure, with similar patterns across different types of endovascular procedures. CONCLUSIONS: Consistent with other professional fields, surgeons' transformational leadership enhances team behavior, especially during the most complex operative phases. This suggests that encouraging surgeons to learn and actively implement a transformational leadership style is meaningful to enhance patient safety and team performance.


Assuntos
Salas Cirúrgicas , Cirurgiões , Humanos , Liderança , Estudos Prospectivos , Segurança do Paciente
3.
PLoS One ; 17(7): e0271737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877764

RESUMO

More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer's disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities' influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Humanos , Bases de Conhecimento , Proteína Amiloide A Sérica
4.
Cancer Discov ; 11(7): 1774-1791, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33589425

RESUMO

Pancreatic cancer metastasis is a leading cause of cancer-related deaths, yet very little is understood regarding the underlying biology. As a result, targeted therapies to inhibit metastasis are lacking. Here, we report that the parathyroid hormone-related protein (PTHrP encoded by PTHLH) is frequently amplified as part of the KRAS amplicon in patients with pancreatic cancer. PTHrP upregulation drives the growth of both primary and metastatic tumors in mice and is highly enriched in pancreatic ductal adenocarcinoma metastases. Loss of PTHrP-either genetically or pharmacologically-dramatically reduces tumor burden, eliminates metastasis, and enhances overall survival. These effects are mediated in part through a reduction in epithelial-to-mesenchymal transition, which reduces the ability of tumor cells to initiate metastatic cascade. Spp1, which encodes osteopontin, is revealed to be a downstream effector of PTHrP. Our results establish a new paradigm in pancreatic cancer whereby PTHrP is a driver of disease progression and emerges as a novel therapeutic vulnerability. SIGNIFICANCE: Pancreatic cancer often presents with metastases, yet no strategies exist to pharmacologically inhibit this process. Herein, we establish the oncogenic and prometastatic roles of PTHLH, a novel amplified gene in pancreatic ductal adenocarcinoma. We demonstrate that blocking PTHrP activity reduces primary tumor growth, prevents metastasis, and prolongs survival in mice.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Neoplasias Pancreáticas/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Relacionada ao Hormônio Paratireóideo/antagonistas & inibidores , Proteína Relacionada ao Hormônio Paratireóideo/genética
5.
Oncogene ; 38(22): 4325-4339, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30705403

RESUMO

PRRX1 is a homeodomain transcriptional factor, which has two isoforms, PRXX1A and PRRX1B. The PRRX1 isoforms have been demonstrated to be important in pancreatic cancer, especially in the regulation of epithelial-to-mesenchymal transition (EMT) in Pancreatic Ductal Adenocarcinoma (PDAC) and of mesenchymal-to-epithelial transition (MET) in liver metastasis. In order to determine the functional underpinnings of PRRX1 and its isoforms, we have unraveled a new interplay between PRRX1 and the FOXM1 transcriptional factors. Our detailed biochemical analysis reveals the direct physical interaction between PRRX1 and FOXM1 proteins that requires the PRRX1A/B 200-222/217 amino acid (aa) region and the FOXM1 Forkhead domain. Additionally, we demonstrate the cooperation between PRRX1 and FOXM1 in the regulation of FOXM1-dependent transcriptional activity. Moreover, we establish FOXM1 as a critical downstream target of PRRX1 in pancreatic cancer cells. We demonstrate a novel role for PRRX1 in the regulation of genes involved in DNA repair pathways. Indeed, we show that expression of PRRX1 isoforms may limit the induction of DNA damage in pancreatic cancer cells. Finally, we demonstrate that targeting FOXM1 with the small molecule inhibitor FDI6 suppress pancreatic cancer cell proliferation and induces their apoptotic cell death. FDI6 sensitizes pancreatic cancer cells to Etoposide and Gemcitabine induced apoptosis. Our data provide new insights into PRRX1's involvement in regulating DNA damage and provide evidence of a possible PRRX1-FOXM1 axis that is critical for PDAC cells.


Assuntos
Dano ao DNA/genética , Proteína Forkhead Box M1/genética , Proteínas de Homeodomínio/genética , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Transição Epitelial-Mesenquimal , Etoposídeo/farmacologia , Células HEK293 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Gencitabina , Neoplasias Pancreáticas
6.
Genes Dev ; 30(2): 233-47, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773005

RESUMO

The two major isoforms of the paired-related homeodomain transcription factor 1 (Prrx1), Prrx1a and Prrx1b, are involved in pancreatic development, pancreatitis, and carcinogenesis, although the biological role that these isoforms serve in the systemic dissemination of pancreatic ductal adenocarcinoma (PDAC) has not been investigated. An epithelial-mesenchymal transition (EMT) is believed to be important for primary tumor progression and dissemination, whereas a mesenchymal-epithelial transition (MET) appears crucial for metastatic colonization. Here, we describe novel roles for both isoforms in the metastatic cascade using complementary in vitro and in vivo models. Prrx1b promotes invasion, tumor dedifferentiation, and EMT. In contrast, Prrx1a stimulates metastatic outgrowth in the liver, tumor differentiation, and MET. We further demonstrate that the switch from Prrx1b to Prrx1a governs EMT plasticity in both mouse models of PDAC and human PDAC. Last, we identify hepatocyte growth factor ( HGF) as a novel transcriptional target of Prrx1b. Targeted therapy of HGF in combination with gemcitabine in a preclinical model of PDAC reduces primary tumor volume and eliminates metastatic disease. Overall, we provide new insights into the isoform-specific roles of Prrx1a and Prrx1b in primary PDAC formation, dissemination, and metastatic colonization, allowing for novel therapeutic strategies targeting EMT plasticity.


Assuntos
Carcinoma Ductal Pancreático/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Invasividade Neoplásica/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Tumorais Cultivadas
7.
J Biol Chem ; 290(9): 5592-605, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561726

RESUMO

Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation.


Assuntos
Autofagia/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Espectrometria de Massas , Camundongos Knockout , Microscopia Confocal , Naftiridinas/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Interferência de RNA , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
8.
Carcinogenesis ; 33(3): 529-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22201186

RESUMO

Recent evidences suggest that the activity of glycogen synthase kinase-3 (GSK3) contributes to the tumorigenic potential of pancreatic cancer cells through modulation of cell proliferation and survival. However, further investigations are needed to identify GSK3-dependent mechanisms involved in the control of pancreatic cancer cell proliferation and survival. This study was undertaken to provide further support for a role of GSK3 in pancreatic cancer cell growth as well as to identify new cellular and molecular mechanisms involved. Herein, we demonstrate that prolonged inhibition of GSK3 triggers an apoptotic response only in human pancreatic cancer cells but not in human non-transformed pancreatic epithelial cells. We show that prolonged inhibition of GSK3 activity increases Bim messenger RNA and protein expressions. Moreover, we provide evidence that activation of the c-jun N-terminal kinase (JNK) pathway is necessary for the GSK3 inhibition-mediated increase in Bim expression and apoptotic response. Finally, we demonstrate that concomitant inhibition of GSK3 potentiates the death ligand-induced apoptotic response in pancreatic cancer cells but not in non-transformed pancreatic epithelial cells and that this effect also requires JNK activity. Considering that different approaches leading to stimulation of death receptor signaling are under clinical trials for treatment of unresectable or metastatic pancreatic cancer, inhibition of GSK3 could represent an attractive new avenue to improve their effectiveness.


Assuntos
Apoptose , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases , Maleimidas/farmacologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Morte Celular/metabolismo
9.
Matagalpa; AIS; 2 ed; 1995. 500 p. ilus.
Monografia em Espanhol | LILACS | ID: lil-184670

RESUMO

Detalle el uso y manejo de medicamentos a nivel local, para su aplicación en el desarrollo de la estrategia de la atención primaria de salud. Proporciona conocimientos científicos actualizados sobre tratamiento y prevención de enfermedades, asi como el concepto de medicamentos esenciales y su uso racional. Se considera como un instrumentos de aprendizaje y de consulta, para los responsables de la supervisión y educación permanente y como guía de referencia para alumnos y docentes de los centros de formación de recursos humanos en salud


Assuntos
Pessoal Técnico de Saúde/educação , Pessoal Técnico de Saúde/normas , Atenção Primária à Saúde/métodos , Atenção Primária à Saúde , Centros Comunitários de Saúde , Medicamentos Essenciais , Manual de Referência , Educação em Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA