Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 473(7): 919-28, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831514

RESUMO

The sodium-iodide symporter (NIS) is an integral membrane protein that plays a crucial role in iodide accumulation, especially in the thyroid. As for many other membrane proteins, its intracellular sorting and distribution have a tremendous effect on its function, and constitute an important aspect of its regulation. Many short sequences have been shown to contribute to protein trafficking along the sorting or endocytic pathways. Using bioinformatics tools, we identified such potential sites on human NIS [tyrosine-based motifs, SH2-(Src homology 2), SH3- and PDZ (post-synaptic density-95/discs large tumour suppressor/zonula occludens-1)-binding motifs, and diacidic, dibasic and dileucine motifs] and analysed their roles using mutagenesis. We found that several of these sites play a role in protein stability and/or targeting to the membrane. Aside from the mutation at position 178 (SH2 plus tyrosine-based motif) that affects iodide uptake, the most drastic effect is associated with the mutation of an internal PDZ-binding motif at position 121 that completely abolishes NIS expression at the plasma membrane. Mutating the sites located on the C-terminal domain of the protein has no effect except for the creation of a diacidic motif that decreases the total NIS protein level without affecting its expression at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Simportadores/metabolismo , Motivos de Aminoácidos , Membrana Celular/genética , Células HEK293 , Humanos , Domínios PDZ , Transporte Proteico/fisiologia , Simportadores/genética , Domínios de Homologia de src
2.
PLoS One ; 8(6): e67645, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825678

RESUMO

Bee venom phospholipase A2 (bvPLA2) is a small, 15kDa enzyme which hydrolyses many phospholipids through interfacial binding. The mutated bvPLA2H34Q (bvPLA2m), in which histidine-34 is replaced by glutamine, is not catalytically active. This protein has been shown to be a suitable membrane anchor and has been suggested as a suitable tumor-antigen vector for the development of novel dendritic cell-based vaccines. To confirm this feature, in this study the fusion protein PNY, composed of NY-ESO-1(NY(s)) fused to the C-terminus of bvPLA2m, was engineered. bvPLA2m enhanced the binding of NY(s) to the membrane of human monocyte-derived dendritic cells (DCs) and, once taken up by the cells, the antigen fused to the vector was directed to both MHC I and MHC II peptide-loading compartments. bvPLA2m was shown to increase the cross-presentation of the NY(s)-derived, restricted HLA-A*02 peptide, NY-ESO-1157-165(NY157-165), at the T1 cell surface. DCs loaded with the fusion protein induced cross-priming of NY(s)-specific CD8 + T-cells with greater efficiency than DCs loaded with NY(s). Sixty-five percent of these NY(s)-specific CD8+ T-cell lines could also be activated with the DCs pulsed with the peptide, NY157-165. Of these CD8+ T-cell lines, two were able to recognize the human melanoma cell line, SK-MEL-37, in a context of HLA-A*02. Only a small number of bvPLA2m CD8+ T-cell lines were induced, indicating the low immunogenicity of the protein. It was concluded that bvPLA2m can be used as a membrane-binding vector to promote MHC class II peptide presentation and MHC class I peptide cross-presentation. Such a system can, therefore, be tested for the preparation of cell-based vaccines.


Assuntos
Antígenos de Neoplasias/metabolismo , Venenos de Abelha/enzimologia , Células Dendríticas/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Fosfolipases A2/metabolismo , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-23722859

RESUMO

ρ-Da1a toxin from eastern green mamba (Dendroaspis angusticeps) venom is a polypeptide of 65 amino acids with a strong affinity for the G-protein-coupled α(1A)-adrenoceptor. This neurotoxin has been crystallized from resolubilized lyophilized powder, but the best crystals grew spontaneously during lyophilization. The crystals belonged to the trigonal space group P3(1)21, with unit-cell parameters a = b = 37.37, c = 66.05 Å, and diffracted to 1.95 Å resolution. The structure solved by molecular replacement showed strong similarities to green mamba muscarinic toxins.


Assuntos
Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae , Peptídeos/química , Peptídeos/genética , Sequência de Aminoácidos , Animais , Cristalização , Liofilização , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Oncogene ; 24(42): 6459-64, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16007197

RESUMO

Many regulatory proteins undergo transient nuclear relocation under physical or chemical stress. This phenomenon is, however, difficult to assess due to the lack of sensitive and standardized biological assays. Here, we describe a new quantitative nuclear relocation assay (QNR), based on expression in yeasts of chimeric proteins in which an artificial transcription factor is fused to a target protein acting as driver for relocation. This assay combines the experimental versatility of yeast with quantitation of nuclear relocation at low levels of protein expression. We have assessed the nuclear relocation of yeast Yap1 and human p53, two transcription factors that relocate to the nucleus in response to oxidative-stress and DNA damage, respectively. We show that p53 efficiently drives the relocation of the chimeric reporter in response to irradiation and that this process requires the C-terminal nuclear export signal (NES). Cd2+ and Hg2+, two metal ions inducing DNA damage as well as conformational changes in p53, have opposite effects on p53 relocation in response to DNA damage. Whereas Hg2+ effects are synergistic to DNA damage, Cd2+ inhibits relocation and sequesters p53 into the cytoplasm. These results demonstrate the effectiveness of QNR to investigate the regulation of p53 shuttling in response to stress signals including suspected environmental carcinogens.


Assuntos
Raios gama , Metais Pesados/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Protein Sci ; 14(7): 1827-39, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15987907

RESUMO

Eukaryotic cells have evolved DNA damage checkpoints in response to genome damage. They delay the cell cycle and activate repair mechanisms. The kinases at the heart of these pathways and the accessory proteins, which localize to DNA lesions and regulate kinase activation, are conserved from yeast to mammals. For Saccharomyces cerevisiae Rad9, a key adaptor protein in DNA damage checkpoint pathways, no clear human ortholog has yet been described in mammals. Rad9, however, shares localized homology with both human BRCA1 and 53BP1 since they all contain tandem C-terminal BRCT (BRCA1 C-terminal) motifs. 53BP1 is also a key mediator in DNA damage signaling required for cell cycle arrest, which has just been reported to possess a tandem Tudor repeat upstream of the BRCT motifs. Here we show that the major globular domain upstream of yeast Rad9 BRCT domains is structurally extremely similar to the Tudor domains recently resolved for 53BP1 and SMN. By expressing several fragments encompassing the Tudor-related motif and characterizing them using various physical methods, we isolated the independently folded unit for yeast Rad9. As in 53BP1, the domain corresponds to the SMN Tudor motif plus the contiguous HCA predicted structure region at the C terminus. These domains may help to further elucidate the structural and functional features of these two proteins and improve knowledge of the proteins involved in DNA damage.


Assuntos
Proteína BRCA1/química , Proteínas de Ciclo Celular/química , Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/fisiologia , Proteínas de Ciclo Celular/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteína Supressora de Tumor p53 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
6.
J Biol Chem ; 278(33): 31078-87, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12756245

RESUMO

Although coenzymeA (CoA) is essential in numerous metabolic pathways in all living cells, molecular characterization of the CoA biosynthetic pathway in Archaea remains undocumented. Archaeal genomes contain detectable homologues for only three of the five steps of the CoA biosynthetic pathway characterized in Eukarya and Bacteria. In case of phosphopantetheine adenylyltransferase (PPAT) (EC 2.7.7.3), the putative archaeal enzyme exhibits significant sequence similarity only with its eukaryotic homologs, an unusual situation for a protein involved in a central metabolic pathway. We have overexpressed in Escherichia coli, purified, and characterized this putative PPAT from the hyperthermophilic archaeon Pyrococcus abyssi (PAB0944). Matrix-assisted laser desorption ionization-time of flight mass spectrometry and high performance liquid chromatography measurements are consistent with the presence of a dephospho-CoA (dPCoA) molecule tightly bound to the polypeptide. The protein indeed catalyzes the synthesis of dPCoA from 4'-phosphopantetheine and ATP, as well as the reverse reaction. The presence of dPCoA stabilizes PAB0944, as it induces a shift from 76 to 82 degrees C of the apparent Tm measured by differential scanning microcalorimetry. Potassium glutamate was found to stabilize the protein at 400 mm. The enzyme behaves as a monomeric protein. Although only distantly related, secondary structure prediction indicates that archaeal and eukaryal PPAT belong to the same nucleotidyltransferase superfamily of bacterial PPAT. The existence of operational proteins highly conserved between Archaea and Eukarya involved in a central metabolic pathway challenge evolutionary scenarios in which eukaryal operational proteins are strictly of bacterial origin.


Assuntos
Coenzima A/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pyrococcus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Varredura Diferencial de Calorimetria , Escherichia coli , Células Eucarióticas/enzimologia , Histidina , Dados de Sequência Molecular , Nucleotidiltransferases/química , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA