Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547398

RESUMO

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Assuntos
Ilhas Genômicas , Klebsiella pneumoniae , Peptídeos , Policetídeos , Animais , Camundongos , Humanos , Virulência , Klebsiella pneumoniae/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia
2.
ACS Infect Dis ; 10(2): 606-623, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38205780

RESUMO

The emergence of hypervirulent Klebsiella pneumoniae (hvKP) strains poses a significant threat to public health due to high mortality rates and propensity to cause severe community-acquired infections in healthy individuals. The ability to form biofilms and produce a protective capsule contributes to its enhanced virulence and is a significant challenge to effective antibiotic treatment. Polyphosphate kinase 1 (PPK1) is an enzyme responsible for inorganic polyphosphate synthesis and plays a vital role in regulating various physiological processes in bacteria. In this study, we investigated the impact of polyP metabolism on the biofilm and capsule formation and virulence traits in hvKP using Dictyostelium discoideum amoeba as a model host. We found that the PPK1 null mutant was impaired in biofilm and capsule formation and showed attenuated virulence in D. discoideum compared to the wild-type strain. We performed a proteomic analysis to gain further insights into the underlying molecular mechanism. The results revealed that the PPK1 mutant had a differential expression of proteins involved in capsule synthesis (Wzi-Ugd), biofilm formation (MrkC-D-H), synthesis of the colibactin genotoxin precursor (ClbB), as well as proteins associated with the synthesis and modification of lipid A (ArnB-LpxC-PagP). These proteomic findings corroborate the phenotypic observations and indicate that the PPK1 mutation is associated with impaired biofilm and capsule formation and attenuated virulence in hvKP. Overall, our study highlights the importance of polyP synthesis in regulating extracellular biomolecules and virulence in K. pneumoniae and provides insights into potential therapeutic targets for treating K. pneumoniae infections.


Assuntos
Dictyostelium , Klebsiella pneumoniae , Humanos , Virulência , Klebsiella pneumoniae/genética , Polifosfatos , Proteômica , Biofilmes
3.
Biol. Res ; 572024.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564022

RESUMO

Background The convergence of hypervirulence and carbapenem resistance in the bacterial pathogen Klebsiella pneumoniae represents a critical global health concern. Hypervirulent K. pneumoniae (hvKp) strains, frequently from sequence type 23 (ST23) and having a K1 capsule, have been associated with severe community-acquired invasive infections. Although hvKp were initially restricted to Southeast Asia and primarily antibiotic-sensitive, carbapenem-resistant hvKp infections are reported worldwide. Here, within the carbapenemase production Enterobacterales surveillance system headed by the Chilean Public Health Institute, we describe the isolation in Chile of a high-risk ST23 dual-carbapenemase-producing hvKp strain, which carbapenemase genes are encoded in a single conjugative plasmid. Results Phenotypic and molecular tests of this strain revealed an extensive resistance to at least 15 antibiotic classes and the production of KPC-2 and VIM-1 carbapenemases. Unexpectedly, this isolate lacked hypermucoviscosity, challenging this commonly used hvKp identification criteria. Complete genome sequencing and analysis confirmed the K1 capsular type, the KpVP-1 virulence plasmid, and the GIE492 and ICEKp10 genomic islands carrying virulence factors strongly associated with hvKp. Although this isolate belonged to the globally disseminated hvKp clonal group CG23-I, it is unique, as it formed a clade apart from a previously reported Chilean ST23 hvKp isolate and acquired an IncN KPC-2 plasmid highly disseminated in South America (absent in other hvKp genomes), but now including a class-I integron carrying blaVIM−1 and other resistance genes. Notably, this isolate was able to conjugate the double carbapenemase plasmid to an E. coli recipient, conferring resistance to 1st-5th generation cephalosporins (including combinations with beta-lactamase inhibitors), penicillins, monobactams, and carbapenems. Conclusions We reported the isolation in Chile of high-risk carbapenem-resistant hvKp carrying a highly transmissible conjugative plasmid encoding KPC-2 and VIM-1 carbapenemases, conferring resistance to most beta-lactams. Furthermore, the lack of hypermucoviscosity argues against this trait as a reliable hvKp marker. These findings highlight the rapid evolution towards multi-drug resistance of hvKp in Chile and globally, as well as the importance of conjugative plasmids and other mobile genetic elements in this convergence. In this regard, genomic approaches provide valuable support to monitor and obtain essential information on these priority pathogens and mobile elements.

4.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959682

RESUMO

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Assuntos
Catequina , Polifenóis , Polifenóis/farmacologia , Chá , Amiloide/química , Proteínas Amiloidogênicas , Catequina/farmacologia , Catequina/química
5.
Front Microbiol ; 11: 405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265865

RESUMO

One of the approaches to address cancer treatment is to develop new drugs not only to obtain compounds with less side effects, but also to have a broader set of alternatives to tackle the resistant forms of this pathology. In this regard, growing evidence supports the use of bacteria-derived peptides such as bacteriocins, which have emerged as promising anti-cancer molecules. In addition to test the activity of these molecules on cancer cells in culture, their in vivo antitumorigenic properties must be validated in animal models. Although the standard approach for such assays employs experiments in nude mice, at the initial stages of testing, the use of high-throughput animal models would permit rapid proof-of-concept experiments, screening a high number of compounds, and thus increasing the possibilities of finding new anti-cancer molecules. A validated and promising alternative animal model are zebrafish larvae harboring xenografts of human cancer cells. Here, we addressed the anti-cancer properties of the antibacterial peptide microcin E492 (MccE492), a bacteriocin produced by Klebsiella pneumoniae, showing that this peptide has a marked cytotoxic effect on human colorectal cancer cells in vitro. Furthermore, we developed a zebrafish xenograft model using these cells to test the antitumor effect of MccE492 in vivo, demonstrating that intratumor injection of this peptide significantly reduced the tumor cell mass. Our results provide, for the first time, evidence of the in vivo antitumoral properties of a bacteriocin tested in an animal model. This evidence strongly supports the potential of this bacteriocin for the development of novel anti-cancer therapies.

6.
Methods Mol Biol ; 1918: 183-190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580409

RESUMO

Important features of host-pathogen interactions have been discovered using nonmammalian hosts. Therefore, model organisms such as the nematode Caenorhabditis elegans, the social amoeba Dictyostelium discoideum, and zebrafish ( Danio rerio ) have been increasingly used for studying bacterial pathogenesis in vivo. These host models are amenable for live cell imaging studies, which can also benefit from online resources and databases ( Dictybase.org , ZFIN.org , Wormbase.org ), as well as from a wide repertoire of genetic and genomic tools generated over the years by the scientific community. Here, we present the protocols we developed to study bacterial dynamics within infected embryonic zebrafish. This chapter describes detailed methods to achieve infections of zebrafish larvae with the foodborne pathogen Salmonella enterica serovar Typhimurium, including embryonic zebrafish spawning and maintenance, bacterial inoculation through intravenous injections and static immersion, followed by fluorescence imaging of infected transgenic zebrafish. Methods for studying bacterial dynamics within zebrafish larvae through live cell imaging are also described.


Assuntos
Rastreamento de Células , Doenças Transmitidas por Alimentos/microbiologia , Peixe-Zebra/microbiologia , Animais , Infecções Bacterianas/microbiologia , Carga Bacteriana , Rastreamento de Células/métodos , Análise de Dados , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Larva/microbiologia , Macrófagos/microbiologia , Neutrófilos/microbiologia
7.
PLoS One ; 13(8): e0200835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071030

RESUMO

Microcin E492 is a pore-forming bacteriocin with toxic activity against Enterobacteriaceae, which undergoes amyloid aggregation as a mechanism to regulate its toxicity. To be active, it requires the posttranslational attachment to the C-terminus of a glycosylated enterochelin derivative (salmochelin), a process carried out by the proteins MceC, MceI and MceJ encoded in the MccE492 gene cluster. Both microcin E492 and salmochelin have a proposed role in the virulence of the bacterial pathogen Klebsiella pneumoniae. Besides, enterochelin is produced as a response to low iron availability and its synthesis is controlled by the global iron regulator Fur. Since the production of active microcin E492 depends on enterochelin biosynthesis, both processes could be coordinately regulated. In this work, we investigated the role of Fur in the expression of the microcin E492 maturation genes mceCJI. mceC was not regulated by Fur as it occurs with its homolog iroB in Salmonella enterica. We demonstrated that mceJI along with the previously uncharacterized gene mceX are transcribed as a single mRNA, and that Fur binds in vivo to a Fur box located upstream of the mceX-mceJI unit. Also, we established that the expression of these genes decreased in a condition of high iron availability, while this effect is abrogated in a Δfur background. Furthermore, our results indicated that MceX acts as a negative regulator of microcin E492 structural gene expression, coupling its synthesis to the iron-dependent regulatory circuit. Consequently, fur or mceX overexpression led to a significant decrease in the antibacterial activity of cells producing microcin E492. Altogether these results show that both the expression of microcin E492 maturation genes mceJI, and MceX the negative regulator of microcin E492 synthesis, are coordinated with the enterochelin production by Fur, depending on the iron levels in the medium.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , DNA Recombinante , Escherichia coli , Regulação da Expressão Gênica , Motivos de Nucleotídeos , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Transcrição Gênica
8.
Artigo em Inglês | MEDLINE | ID: mdl-29441327

RESUMO

Inorganic polyphosphate (polyP) deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk) encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into Salmonella-Dictyostelium interaction. Altogether, our results indicate that inorganic polyP is essential for S. Typhimurium virulence and survival in D. discoideum. In addition, we have validated the use of global proteomic analyses to simultaneously evaluate the host-pathogen interaction of S. Typhimurium and D. discoideum. Furthermore, our infection assays using these organisms can be exploited to screen for novel anti-virulence molecules targeting inorganic polyP biosynthesis.


Assuntos
Dictyostelium/microbiologia , Interações Hospedeiro-Patógeno , Polifosfatos/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Animais , Espectrometria de Massas , Mutação , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteômica/métodos , Salmonelose Animal , Salmonella typhimurium/genética , Virulência/genética
9.
Microb Pathog ; 107: 317-320, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400130

RESUMO

Pathogenic Salmonella strains have a set of virulence factors allowing them to generate systemic infections and damage in a variety of hosts. Among these factors, bacterial proteins secreted by specialized systems are used to penetrate the host's intestinal mucosa, through the invasion and destruction of specialized epithelial M cells in the intestine. On the other hand, numerous studies have demonstrated that humans, as well as experimental animal hosts, respond to Salmonella infection by activating both innate and adaptive immune responses. Here, through live cell imaging of S. Typhimurium infection of zebrafish larvae, we showed that besides the intestinal colonization, a deformed cloacae region and a concomitant accumulation of S. Typhimurium cells was observed upon bacterial infection. The swelling led to a persistent inflammation of infected larvae, although the infection was non-lethal. The in vivo inflammation process was confirmed by the co-localization of GFP-tagged S. Typhimurium with mCherry-tagged neutrophils at 72 h post exposition. Our live-cell analyses suggest that Salmonella Typhimurium induce cloacitis-like symptoms in zebrafish larvae.


Assuntos
Larva/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Peixe-Zebra/microbiologia , Animais , Proteínas de Bactérias , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno/imunologia , Imersão , Imunidade Inata , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Neutrófilos/imunologia , Salmonelose Animal/imunologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA