Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201299

RESUMO

The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Receptor A2A de Adenosina , Receptores de Dopamina D2 , Transdução de Sinais , Astrócitos/metabolismo , Animais , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Receptores de Dopamina D2/metabolismo , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Humanos , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Camundongos
2.
Neuropharmacology ; 237: 109636, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321323

RESUMO

It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Assuntos
Astrócitos , Corpo Estriado , Astrócitos/metabolismo , Corpo Estriado/metabolismo , Transmissão Sináptica/fisiologia , Neostriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptor A2A de Adenosina/metabolismo
3.
Neurobiol Dis ; 168: 105716, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367629

RESUMO

The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing doses of the neurotoxic anticancer drug oxaliplatin (0.3-100µM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor ß1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection (100 ng and 300 ng) and continuous infusion (100 and 300 ng/die-1). Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induced protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevented neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.


Assuntos
Antineoplásicos , Neuralgia , Alarminas/efeitos adversos , Alarminas/metabolismo , Animais , Antineoplásicos/efeitos adversos , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Hiperalgesia/metabolismo , Interleucina-1alfa/efeitos adversos , Interleucina-1alfa/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Oxaliplatina/toxicidade , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216441

RESUMO

BACKGROUND: Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS: In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS: Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS: When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Corpo Estriado/metabolismo , Masculino , Neostriado/metabolismo , Ocitocina/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Prog Mol Biol Transl Sci ; 169: 247-277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31952688

RESUMO

The discovery of receptor-receptor interactions in the early 1980s, together with a more accurate focusing of allosteric mechanisms in proteins, expanded the knowledge on the G protein-coupled receptor (GPCR)-mediated signaling processes. GPCRs were seen to operate not only as monomers, but also as quaternary structures shaped by allosteric interactions. These integrative mechanisms can change the function of the GPCRs involved, leading to a sophisticated dynamic of the receptor assembly in terms of modulation of recognition and signaling. In this context, the heterodimeric complex formed by the adenosine A2A and the dopamine D2 receptors likely represents a prototypical example. The pharmacological evidence obtained, together with the tissue distribution of the A2A-D2 heteromeric complexes, suggested they could represent a target for new therapeutic strategies addressing significant disorders of the central nervous system. The research findings and the perspectives they offer from the therapeutic standpoint are the focus of the here presented discussion.


Assuntos
Astrócitos/fisiologia , Neurônios/fisiologia , Receptor A2A de Adenosina/fisiologia , Receptores de Dopamina D2/fisiologia , Adenosina/metabolismo , Sítio Alostérico , Animais , Sistema Nervoso Central/metabolismo , Biologia Computacional , Dopamina/metabolismo , Humanos , Camundongos , Doença de Parkinson/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Esquizofrenia/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109007

RESUMO

Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor⁻receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor⁻receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor⁻receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.


Assuntos
Astrócitos/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Membrana Celular/metabolismo , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Multimerização Proteica , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/química , Receptores de Dopamina D2/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-30833931

RESUMO

The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.

8.
J Mol Neurosci ; 65(4): 456-466, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30030763

RESUMO

The interaction between adenosine A2A and dopamine D2 receptors in striatal neurons is a well-established phenomenon and has opened up new perspectives on the molecular mechanisms involved in Parkinson's disease. However, it has barely been investigated in astrocytes. Here, we show by immunofluorescence that both A2A and D2 receptors are expressed in adult rat striatal astrocytes in situ, and investigate on presence, function, and interactions of the receptors in the astrocyte processes-acutely prepared from the adult rat striatum-and on the effects of homocysteine on the A2A-D2 receptor-receptor interaction. We found that A2A and D2 receptors were co-expressed on vesicular glutamate transporter-1-positive astrocyte processes, and confirmed that A2A-D2 receptor-receptor interaction controlled glutamate release-assessed by measuring the [3H]D-aspartate release-from the processes. The complexity of A2A-D2 receptor-receptor interaction is suggested by the effect of intracellular homocysteine, which reduced D2-mediated inhibition of glutamate release (homocysteine allosteric action on D2), without interfering with the A2A-mediated antagonism of the D2 effect (maintained A2A-D2 interaction). Our findings indicate the crucial integrative role of A2A-D2 molecular circuits at the plasma membrane of striatal astrocyte processes. The fact that homocysteine reduced D2-mediated inhibition of glutamate release could provide new insights into striatal astrocyte-neuron intercellular communications. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, these findings may shed light on the pathogenic mechanisms of the disease and contribute to the development of new drugs for its treatment.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/metabolismo , Homocisteína/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Regulação Alostérica , Animais , Células Cultivadas , Corpo Estriado/citologia , Ácido Glutâmico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/genética
9.
J Neurochem ; 140(2): 268-279, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896809

RESUMO

Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/fisiologia , Adenosina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Neostriado/metabolismo , Ratos Sprague-Dawley
10.
Neuropharmacology ; 97: 133-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26071109

RESUMO

Anticancer therapy based on the repeated administration of oxaliplatin is limited by the development of a neuropathic syndrome difficult to treat. Oxaliplatin neurotoxicity is based on complex nervous mechanisms, the comprehension of the role of single neurotransmitters and the knowledge of the signal flow among cells is matter of importance to improve therapeutic chances. In a rat model of oxaliplatin-induced neuropathy, we report increased P2X7-evoked glutamate release from cerebrocortical synaptosomes. The release was abolished by the P2X7 receptor (P2X7R) antagonists Brilliant-Blue-G (BBG) and A-438079, and significantly reduced by Carbenoxolone and the Pannexin 1 (Panx1) selective inhibitors Erioglaucine and (10)Panx suggesting the recruitment of Panx1. Aimed to evaluate the significance of P2X7R-Panx1 system activation in pain generated by oxaliplatin, pharmacological modulators were spinally infused by intrathecal catheter in oxaliplatin-treated animals. BBG, Erioglaucine and (10)Panx reverted oxaliplatin-dependent pain. Finally, the influence of the P2X7R-Panx1 system blockade on oxaliplatin anticancer activity was evaluated on the human colon cancer cell line HT-29. Prevention of HT-29 apoptosis and mortality was dependent by kind and concentration of P2X7R antagonists. On the contrary, the inhibition of Panx1 did not alter oxaliplatin lethality in tumor cells. It is concluded that glutamate release dependent on P2X7R is increased in cerebrocortical nerve terminals from oxaliplatin-treated rats; the increase is mediated by functional recruitment of Panx1; P2X7R antagonists and Panx1 inhibitors revert oxaliplatin-induced neuropathic pain; Panx1 inhibitors do not alter the oxaliplatin-induced mortality of cancer cells HT-29. The inhibition of Panx1 channel is suggested as a new and safe pharmacological target.


Assuntos
Antineoplásicos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Compostos Organoplatínicos/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Analgésicos/farmacologia , Animais , Antineoplásicos/toxicidade , Benzenossulfonatos/farmacologia , Carbenoxolona/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Corantes de Rosanilina/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Tetrazóis/farmacologia
11.
J Neurochem ; 124(6): 821-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23293841

RESUMO

P2X7 receptors trigger Ca(2+) -dependent exocytotic glutamate release, but also function as a route for non-exocytotic glutamate release from neurons or astrocytes. To gain an insight into the mechanisms involving the P2X7 receptor as a direct pathway for glutamate release, we compared the behavior of a full-length rat P2X7 receptor, a truncated rat P2X7 receptor in which the carboxyl tail had been deleted, a rat P2X7 receptor with the 18-amino acid cysteine-rich motif of the carboxyl tail deleted, and a rat P2X2 receptor, all of which are expressed in HEK293 cells. We found that the P2X7 receptor function as a route for glutamate release was antagonized in a non-competitive way by extracellular Mg(2+) , did not require the recruitment of pore-forming molecules, and was dependent on the carboxyl tail. Indeed, the truncated P2X7 receptor and the P2X7 receptor with the deleted cysteine-rich motif both lost their function as a pathway for glutamate release, while still evoking intracellular Ca(2+) elevation. No glutamate efflux was observed through the P2X2 receptor. Notably, HEK293 cells (lacking the machinery for Ca(2+) -dependent exocytosis), when transfected with P2X7 receptors, appear to be a suitable model for investigating the P2X7 receptor as a route for non-exocytotic glutamate efflux.


Assuntos
Ácido Glutâmico/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Cisteína/deficiência , Exocitose/genética , Células HEK293 , Humanos , Ratos , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
PLoS One ; 7(8): e44518, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952988

RESUMO

BACKGROUND: Extracellular high mobility group box 1 (HMGB1) protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+) influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+)-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139)) peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.


Assuntos
Espaço Extracelular/metabolismo , Proteína HMGB1/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Acetamidas/farmacologia , Animais , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Humanos , Masculino , Camundongos , N-Metilaspartato/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Trítio
13.
Pharmacol Res ; 57(5): 374-82, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18467116

RESUMO

Bone marrow stromal cells (BMSC) have the capability to undergo a change of morphology, reminiscent of neuronal cells, after exposure to an inductive medium. These induced BMSC-derived neuron-like (BDNL) cells express several neuronal markers, including Microtubule-Associated Protein Tau, Neurofilament M, and Nestin as revealed by immunocytochemistry analysis. To assess whether the induction process has possible functional relevance, we have focused our attention on the expression of neurotransmitter receptors. In particular, we show that the expression of GABA(A) subunits alpha1, beta2/3, epsilon and GABA(B1) mRNAs is greatly enhanced in BMSC by the induction treatment. Similar results were obtained from rat skin fibroblasts subjected to the same induction protocol, with the exception for the GABA(B2) transcript that was expressed only by BMSC and BDNL. The presence of both GABA(B1) and GABA(B2) subunits in BDNL cells suggests that functional GABA(B) receptors might be assembled: we indeed found that a functional GABA(B) receptor, negatively linked to cyclic AMP production, is expressed in BDNL. Therefore, we suggest that BMSC can be converted into cells equipped with appropriate receptors coupled to transduction mechanisms, potentially responding to a specific neurotransmitter.


Assuntos
Células da Medula Óssea/metabolismo , Receptores de GABA/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Meios de Cultura , AMP Cíclico/metabolismo , Primers do DNA/genética , Expressão Gênica , Técnicas In Vitro , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
14.
J Neurochem ; 105(6): 2330-42, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18315565

RESUMO

Although growing evidence suggests that extracellular ATP might play roles in the control of astrocyte/neuron crosstalk in the CNS by acting on P2X(7) receptors, it is still unclear whether neuronal functions can be attributed to P2X(7) receptors. In the present paper, we investigate the location, pharmacological profile, and function of P2X(7) receptors on cerebrocortical nerve terminals freshly prepared from adult rats, by measuring glutamate release and calcium accumulation. The preparation chosen (purified synaptosomes) ensures negligible contamination of non-neuronal cells and allows exposure of 'nude' release-regulating pre-synaptic receptors. To confirm the results obtained, we also carried out specific experiments on human embryonic kidney 293 cells which had been stably transfected with rat P2X(7) receptors. Together, our findings suggest that (i) P2X(7) receptors are present in a subpopulation of adult rat cerebrocortical nerve terminals; (ii) P2X(7) receptors are localized on glutamatergic nerve terminals; (iii) P2X(7) receptors play a significant role in ATP-evoked glutamate efflux, which involves Ca(2+)-dependent vesicular release; and (iv) the P2X(7) receptor itself constitutes a significant Ca(2+)-independent mode of exit for glutamate.


Assuntos
Trifosfato de Adenosina/fisiologia , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Purinérgicos P2/fisiologia , Fatores Etários , Animais , Linhagem Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7
15.
Neuropharmacology ; 47(6): 884-91, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15527822

RESUMO

Glutamate extracellular accumulation is an early event in brain ischemia triggering excitotoxic neuron damage. We have investigated how to control the glutamate efflux from human cerebrocortical slices superfused in conditions simulating an acute ischemic insult (oxygen and glucose deprivation). The efflux of previously accumulated [3H]D-aspartate or endogenous glutamate increased starting 18 min after exposure to ischemia and returned almost to basal values in 6 min reperfusion with standard medium. Superfusion with Ca2+-free, EGTA (0.5 mM)-containing medium or with medium containing tetrodotoxin (TTX; 0.5 microM) inhibited the ischemia (24 min)-evoked [3H]D-aspartate efflux by about 50% and 65%, respectively. The ischemia (24 or 36 min)-evoked efflux of [3H]D-aspartate or endogenous glutamate was reduced at least 40% by the adenosine A(2A) receptor antagonist SCH 58261 (1 microM); the compound was effective when added up to 15 min after exposure to ischemia. No effect of SCH 58261 on the ischemia-evoked [3H]D-aspartate was found in Ca2+-free, EGTA-containing medium. To conclude, a significant component of the ischemia-evoked glutamate efflux in human cerebrocortical slices seems to occur by a vesicular-like mechanism. Endogenously released adenosine is likely to activate A(2A) receptors that enhance vesicular-like glutamate release during ischemia; A(2A) receptor antagonists would deserve consideration for their neuroprotective potential.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Vesículas Sinápticas/metabolismo , Adulto , Idoso , Anestésicos Locais/farmacologia , Ácido Aspártico/metabolismo , Cálcio/fisiologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Glucose/deficiência , Glucose/fisiologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologia , Traumatismo por Reperfusão/patologia , Vesículas Sinápticas/efeitos dos fármacos , Tetrodotoxina/farmacologia , Triazóis/farmacologia
16.
Neuropharmacology ; 45(2): 201-10, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12842126

RESUMO

Adenosine released during cerebral ischemia is considered to act as a neuroprotectant, possibly through the inhibition of glutamate release. The involvement of A(1) and A(2A) receptors in the control of the rise of extracellular glutamate during ischemia was investigated by monitoring the effects of selective A(1) and A(2A) receptor antagonists on ischemia-evoked glutamate release in rat cerebrocortical slices.Slices were superfused with oxygen- and glucose-deprived medium and [(3)H]D-aspartate or endogenous glutamate was measured in the superfusate fractions. Withdrawal of Ca(2+) ions or addition of tetrodotoxin more than halved the ischemia-evoked efflux of [(3)H]D-aspartate or glutamate, compatible with a vesicular-like release. The glutamate transporter inhibitor DL-TBOA prevented the ischemia-evoked efflux of [(3)H]D-aspartate by about 40%, indicating a carrier-mediated efflux. The ischemia-evoked efflux of [(3)H]D-aspartate or glutamate was increased by the A(1) receptor antagonist DPCPX. The A(2A) antagonist SCH 58261 decreased [(3)H]D-aspartate or endogenous glutamate efflux (50 and 55% maximal inhibitions; EC(50): 14.9 and 7.6 nM, respectively); the drug was effective also if added during ischemia. No effect of either the A(1) or the A(2A) receptor antagonist was found on the ischemia-evoked efflux of [(3)H]D-aspartate in Ca(2+)-free medium. Our data suggest that adenosine released during cerebral ischemia can activate inhibitory A(1) and stimulatory A(2A) receptors that down- or up-regulate the vesicular-like component of glutamate release.


Assuntos
Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Antagonistas de Receptores Purinérgicos P1 , Animais , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina , Receptores Purinérgicos P1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA