Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 676192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113333

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3' end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.

2.
Vaccine ; 35(24): 3178-3185, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28479174

RESUMO

The lipoprotein OspA is produced by the Lyme disease spirochetes primarily in unfed ticks. OspA production is down-regulated by the blood meal and it is not produced in mammals except for possible transient production during late stage infection in patients with Lyme arthritis. Vaccination with OspA elicits antibody (Ab) that can target spirochetes in the tick midgut during feeding and inhibit transmission to mammals. OspA was the primary component of the human LYMErix™ vaccine. LYMErix™ was available from 1998 to 2002 but then pulled from the market due to declining sales as a result of unsubstantiated concerns about vaccination induced adverse events and poor efficacy. It was postulated that a segment of OspA that shares sequence similarity with a region in human LFA-1 and may trigger putative autoimmune events. While evidence supporting such a link has not been demonstrated, most efforts to move forward with OspA as a vaccine component have sought to eliminate this region of concern. Here we identify an OspA linear epitope localized within OspA amino acid residues 221-240 (OspA221-240) that lacks the OspA region suggested to elicit autoimmunity. A peptide consisting of residues 221-240 was immunogenic in mice. Ab raised against OspA221-240 peptide surface labeled B. burgdorferi in IFAs and displayed potent Ab mediated-complement dependent bactericidal activity. BLAST analyses identified several variants of OspA221-240 and a closely related sequence in OspB. It is our hypothesis that integration of the OspA221-240 epitope into a multivalent-OspC based chimeric epitope based vaccine antigen (chimeritope) could result in a subunit vaccine that protects against Lyme disease through synergistic mechanisms.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Borrelia burgdorferi/imunologia , Epitopos/imunologia , Lipoproteínas/imunologia , Vacinas contra Doença de Lyme/imunologia , Peptídeos/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Superfície/química , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/química , Vacinas Bacterianas/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Descoberta de Drogas , Epitopos/química , Imunoglobulina G/sangue , Ixodes/microbiologia , Lipoproteínas/química , Lipoproteínas/genética , Doença de Lyme/prevenção & controle , Camundongos , Peptídeos/administração & dosagem , Peptídeos/química , Reação em Cadeia da Polimerase , Ensaios de Anticorpos Bactericidas Séricos , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
3.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28103630

RESUMO

Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that afflicts 1 million people annually. This obligate intracellular bacterium boasts one of the largest microbial arsenals of ankyrin repeat-containing protein (Ank) effectors, most of which target the endoplasmic reticulum (ER) by undefined mechanisms. Ank9 is the only one proven to function during infection. Here, we demonstrate that Ank9 bears a motif that mimics the GRIP domain of eukaryotic golgins and is necessary and sufficient for its Golgi localization. Ank9 reaches the ER exclusively by retrograde trafficking from the Golgi. Consistent with this observation, it binds COPB2, a host protein that mediates Golgi-to-ER transport. Ank9 destabilizes the Golgi and ER in a Golgi localization domain-dependent manner and induces the activating transcription factor 4-dependent unfolded protein response. The Golgi is also destabilized in cells infected with O. tsutsugamushi or treated with COPB2 small interfering RNA. COPB2 reduction and/or the cellular events that it invokes, such as Golgi destabilization, benefit Orientia replication. Thus, Ank9 or bacterial negative modulation of COPB2 might contribute to the bacterium's intracellular replication. This report identifies a novel microbial Golgi localization domain, links Ank9 to the ability of O. tsutsugamushi to perturb Golgi structure, and describes the first mechanism by which any Orientia effector targets the secretory pathway.


Assuntos
Anquirinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteína Coatomer/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Orientia tsutsugamushi/patogenicidade , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Tifo por Ácaros/microbiologia , Resposta a Proteínas não Dobradas/fisiologia
4.
Cell Microbiol ; 16(8): 1133-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24612118

RESUMO

Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.


Assuntos
Adesinas Bacterianas/biossíntese , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/microbiologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Ehrlichiose/patologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Anaplasma phagocytophilum/imunologia , Anaplasmose/imunologia , Anaplasmose/patologia , Animais , Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Ehrlichiose/imunologia , Ehrlichiose/microbiologia , Células HL-60 , Humanos , Soros Imunes/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Carrapatos , Regulação para Cima
5.
Clin Vaccine Immunol ; 18(6): 901-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525304

RESUMO

Borrelia burgdorferi OspC is an outer membrane lipoprotein required for the establishment of infection in mammals. Due to its universal distribution among B. burgdorferi sensu lato strains and high antigenicity, it is being explored for the development of a next-generation Lyme disease vaccine. An understanding of the surface presentation of OspC will facilitate efforts to maximize its potential as a vaccine candidate. OspC forms homodimers at the cell surface, and it has been hypothesized that it may also form oligomeric arrays. Here, we employ site-directed mutagenesis to test the hypothesis that interdimeric disulfide bonds at cysteine 130 (C130) mediate oligomerization. B. burgdorferi B31 ospC was replaced with a C130A substitution mutant to yield strain B31::ospC(C130A). Recombinant protein was also generated. Disulfide-bond-dependent oligomer formation was demonstrated and determined to be dependent on C130. Oligomerization was not required for in vivo function, as B31::ospC(C130A) retained infectivity and disseminated normally. The total IgG response and the induced isotype pattern were similar between mice infected with untransformed B31 and those infected with the B31::ospC(C130A) strain. These data indicate that the immune response to OspC is not significantly altered by formation of OspC oligomers, a finding that has significant implications in Lyme disease vaccine design.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Dissulfetos , Vacinas contra Doença de Lyme/metabolismo , Multimerização Proteica , Fatores de Virulência/metabolismo , Substituição de Aminoácidos/genética , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/imunologia , Cisteína/genética , Imunoglobulina G/sangue , Vacinas contra Doença de Lyme/química , Vacinas contra Doença de Lyme/genética , Vacinas contra Doença de Lyme/imunologia , Camundongos , Camundongos Endogâmicos C3H , Mutagênese Sítio-Dirigida , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/imunologia
6.
Infect Immun ; 70(12): 7033-41, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12438383

RESUMO

Borrelia burgdorferi B31MI carries 18 plasmid-carried genes that form the bdr gene family. The bdr genes of B. burgdorferi encode proteins that form three distinct subfamilies, the BdrD, BdrE, and BdrF subfamilies. bdr orthologs have been demonstrated to be carried by all Borrelia species analyzed, and their widespread distribution suggests that they play an important genus-wide functional role. The biological rationale for maintaining 18 bdr alleles has not been defined. It is our hypothesis that specific paralogs function in different environments and are differentially expressed in response to environmental conditions. As a first step in testing this hypothesis, the production patterns of the Bdr proteins in spirochetes grown under a variety of conditions were assessed through immunoblot analyses. The influence of temperature, serum deprivation, tick feeding, and the mammalian environment on Bdr production was evaluated. These analyses revealed that the synthesis of some Bdr paralogs is environmentally regulated. The production of BdrF(2,) BdrF(1), BdrE(4), and BdrE(5) were upregulated in host-adapted bacteria, while the production levels of other Bdr paralogs were influenced by temperature and serum starvation. These observations suggest that different Bdr paralogs function in different biological environments and provide insight into the biological basis for maintaining multiple members of this gene family.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Meios de Cultura/química , Comportamento Alimentar , Ixodes/microbiologia , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/imunologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA