Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2058, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448474

RESUMO

Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Animais , Camundongos , Doença de Alzheimer/genética , Macrófagos , Colesterol , Lipídeos , Proteínas de Homeodomínio , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37642942

RESUMO

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Animais , Camundongos , Humanos , Oncogenes , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Linhagem Celular , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975090

RESUMO

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Inflamação , Apolipoproteínas E/genética
4.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719765

RESUMO

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Assuntos
Proteínas de Homeodomínio/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Estudos de Coortes , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
Nat Commun ; 12(1): 1610, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712570

RESUMO

Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Genômica , Células Mieloides , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos , Microglia/metabolismo , Transcriptoma
6.
Neurobiol Dis ; 148: 105217, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301878

RESUMO

More than forty loci contribute to genetic risk for Alzheimer's disease (AD). These risk alleles are enriched in myeloid cell enhancers suggesting that microglia, the brain-resident macrophages, contribute to AD risk. We have previously identified SPI1/PU.1, a master regulator of myeloid cell development in the brain and periphery, as a genetic risk factor for AD. Higher expression of SPI1 is associated with increased risk for AD, while lower expression is protective. To investigate the molecular and cellular phenotypes associated with higher and lower expression of PU.1 in microglia, we used stable overexpression and knock-down of PU.1 in BV2, an immortalized mouse microglial cell line. Transcriptome analysis suggests that reduced PU.1 expression suppresses expression of homeostatic genes similar to the disease-associated microglia response to amyloid plaques in mouse models of AD. Moreover, PU.1 knock-down resulted in activation of protein translation, antioxidant action and cholesterol/lipid metabolism pathways with a concomitant decrease of pro-inflammatory gene expression. PU.1 overexpression upregulated and knock-down downregulated phagocytic uptake in BV2 cells independent of the nature of the engulfed material. However, cells with reduced PU.1 expression retained their ability to internalize myelin similar to control albeit with a delay, which aligns with their anti-inflammatory profile. Here we identified several microglial responses that are modulated by PU.1 expression levels and propose that risk association of PU.1 to AD is driven by increased pro-inflammatory response due to increased viability of cells under cytotoxic conditions. In contrast, low expression of PU.1 leads to increased cell death under cytotoxic conditions accompanied by reduced pro-inflammatory signaling that decreased A1 reactive astrocytes signature supporting the protective effect of SPI1 genotype in AD. These findings inform future in vivo validation studies and design of small molecule screens for therapeutic discovery in AD.


Assuntos
Doença de Alzheimer/genética , Apoptose/genética , Inflamação/genética , Microglia/metabolismo , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Rotenona/farmacologia , Estaurosporina , Desacopladores/farmacologia
7.
Ann Neurol ; 89(1): 54-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996171

RESUMO

OBJECTIVE: The purpose of this study was to infer causal relationships between 22 previously reported risk factors for Alzheimer's disease (AD) and the "AD phenome": AD, AD age of onset (AAOS), hippocampal volume, cortical surface area and thickness, cerebrospinal fluid (CSF) levels of amyloid-ß (Aß42 ), tau, and ptau181 , and the neuropathological burden of neuritic plaques, neurofibrillary tangles (NFTs), and vascular brain injury (VBI). METHODS: Polygenic risk scores (PRS) for the 22 risk factors were computed in 26,431 AD cases/controls and the association with AD was evaluated using logistic regression. Two-sample Mendelian randomization (MR) was used to infer the causal effect of risk factors on the AD phenome. RESULTS: PRS for increased education and diastolic blood pressure were associated with reduced risk for AD. MR indicated that only education was causally associated with reduced risk of AD, delayed AAOS, and increased cortical surface area and thickness. Total- and LDL-cholesterol levels were causally associated with increased neuritic plaque burden, although the effects were driven by single nucleotide polymorphisms (SNPs) within the APOE locus. Diastolic blood pressure and pulse pressure are causally associated with increased risk of VBI. Furthermore, total cholesterol was associated with decreased hippocampal volume; smoking initiation with decreased cortical thickness; type 2 diabetes with an earlier AAOS; and sleep duration with increased cortical thickness. INTERPRETATION: Our comprehensive examination of the genetic evidence for the causal relationships between previously reported risk factors in AD using PRS and MR supports a causal role for education, blood pressure, cholesterol levels, smoking, and diabetes with the AD phenome. ANN NEUROL 2021;89:54-65.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Colesterol/metabolismo , Emaranhados Neurofibrilares/genética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cognição/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sono/fisiologia
8.
J Biol Chem ; 293(32): 12634-12646, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29794134

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/química , Proteínas Mutantes/química , Receptores Imunológicos/química , Doença de Alzheimer/patologia , Cristalografia por Raios X , Células Dendríticas/química , Células Dendríticas/patologia , Variação Genética , Humanos , Ligantes , Macrófagos/química , Macrófagos/patologia , Glicoproteínas de Membrana/genética , Microglia/química , Microglia/patologia , Proteínas Mutantes/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Osteoclastos/química , Osteoclastos/patologia , Conformação Proteica , Domínios Proteicos/genética , Receptores Imunológicos/genética
9.
Nat Neurosci ; 20(8): 1052-1061, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628103

RESUMO

A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Alelos , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Fatores de Risco , Fatores de Transcrição/genética
10.
Hum Mol Genet ; 19(22): 4373-84, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20739295

RESUMO

Expansion of a polyglutamine (polyQ) tract in the Huntingtin (Htt) protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Loss of the normal function of Htt is thought to be an important pathogenetic component of HD. However, the function of wild-type Htt is not well defined. Htt is thought to be a multifunctional protein that plays distinct roles in several biological processes, including synaptic transmission, intracellular transport and neuronal transcription. Here, we show with biochemical and live cell imaging studies that wild-type Htt stimulates the transport of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) out of dendritic spines (where NF-κB is activated by excitatory synaptic input) and supports a high level of active NF-κB in neuronal nuclei (where NF-κB stimulates the transcription of target genes). We show that this novel function of Htt is impaired by the polyQ expansion and thus may contribute to the etiology of HD.


Assuntos
Núcleo Celular/metabolismo , Mutação , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sinapses/metabolismo , Animais , Transporte Biológico/genética , Núcleo Celular/genética , Núcleo Celular/patologia , Técnicas de Introdução de Genes , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/genética , Sinapses/patologia
11.
Mol Cell Neurosci ; 28(4): 727-36, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15797719

RESUMO

NeuroD/BETA2 (referred to as NeuroD hereafter) is a basic helix-loop-helix (bHLH) transcription factor that is required for the development and survival of a subset of neurons and pancreatic endocrine cells in mice. Gain-of-function analyses demonstrated that NeuroD can (i) convert epidermal fate into neuronal fate when overexpressed in Xenopus embryos, and (ii) activate the insulin promoter in pancreatic beta cell lines in response to glucose stimulation. In glucose-stimulated INS-1 pancreatic beta cells, mutations of S259, S266, and S274 to alanines inhibited the ability of NeuroD to activate the insulin promoter. Phosphorylation of those serine residues by ERK1/2 was required for NeuroD activity in that assay. To determine whether the same residues are implicated in the neurogenic activity of NeuroD, we mutated the conserved S259, S266, and S274 of Xenopus NeuroD to alanines (S259A, S266A, and S274A), and performed an ectopic neurogenesis assay in Xenopus embryos. In contrast to what has been observed in the pancreatic beta cell line, the S266A and S274A mutant forms of Xenopus NeuroD displayed significantly increased abilities to form ectopic neurons, while S259A had little effect. In addition, S266A and S274A of Xenopus NeuroD resulted in increased accumulation of protein in the injected embryos while the corresponding mutations on mouse NeuroD did not have the same effect in an insulinoma cell line. Our results demonstrate that the consequence of NeuroD protein modification is context-dependent at both the molecular and functional levels.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular Tumoral , Cricetinae , Feminino , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação , Serina/genética , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Xenopus laevis
12.
Proc Natl Acad Sci U S A ; 100(16): 9578-83, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12881483

RESUMO

NeuroD (ND) is a basic helix-loop-helix transcription factor important for neuronal development and survival. By using a yeast two-hybrid screen, we identified two proteins that interact with ND, huntingtin-associated protein 1 (HAP1) and mixed-lineage kinase 2 (MLK2), both of which are known to interact with huntingtin (Htt). Htt is a ubiquitous protein important for neuronal transcription, development, and survival, and loss of its function has been implicated in the pathogenesis of Huntington's disease, a neurodegenerative disorder. However, the mechanism by which Htt exerts its neuron-specific function at the molecular level is unknown. Here we report that Htt interacts with ND via HAP1, and that MLK2 phosphorylates and stimulates the activity of ND. Furthermore, we show that Htt and HAP1 facilitate the activation of ND by MLK2. To our knowledge, ND is the first example of a neuron-specific transcription factor involved in neuronal development and survival whose activity is modulated by Htt. We propose that Htt, together with HAP1, may function as a scaffold for the activation of ND by MLK2.


Assuntos
Carbono-Oxigênio Liases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MAP Quinase Quinase Quinases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus , Fosfatase Alcalina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sobrevivência Celular , DNA/metabolismo , DNA Complementar/metabolismo , Deleção de Genes , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA