Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279279

RESUMO

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Assuntos
Coesinas , Deficiências do Desenvolvimento , Humanos , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Coesinas/genética , Síndrome de Cornélia de Lange/genética , DNA , Mutação , Mutação de Sentido Incorreto , Deficiências do Desenvolvimento/genética
2.
Protein Sci ; 31(5): e4314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481629

RESUMO

IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine-tuned by post-translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide-controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis.


Assuntos
Nucleotídeos de Guanina , IMP Desidrogenase , Adenina , Trifosfato de Adenosina , Guanosina Pentafosfato , Guanosina Trifosfato/metabolismo , Homeostase , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Modelos Moleculares
3.
Sci Rep ; 7(1): 2648, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572600

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme for nucleotide metabolism and cell proliferation. Despite IMPDH is the target of drugs with antiviral, immunosuppressive and antitumor activities, its physiological mechanisms of regulation remain largely unknown. Using the enzyme from the industrial fungus Ashbya gossypii, we demonstrate that the binding of adenine and guanine nucleotides to the canonical nucleotide binding sites of the regulatory Bateman domain induces different enzyme conformations with significantly distinct catalytic activities. Thereby, the comparison of their high-resolution structures defines the mechanistic and structural details of a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity of eukaryotic IMPDHs. Remarkably, retinopathy-associated mutations lie within the mechanical hinges of the conformational change, highlighting its physiological relevance. Our results expand the mechanistic repertoire of Bateman domains and pave the road to new approaches targeting IMPDHs.


Assuntos
Nucleotídeos de Adenina/metabolismo , Nucleotídeos de Guanina/metabolismo , IMP Desidrogenase/metabolismo , Nucleotídeos de Adenina/química , Sítios de Ligação , Nucleotídeos de Guanina/química , IMP Desidrogenase/química , Modelos Moleculares , Conformação Molecular , Saccharomycetales
4.
Sci Rep ; 7(1): 3266, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607419

RESUMO

The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexos Multiproteicos/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Hidrólise , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Coesinas
5.
Biochemistry ; 52(5): 959-66, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23320924

RESUMO

The use of quantum mechanics/molecular mechanics simulations to study the free energy landscape of the water activation at the catalytic site of mitochondrial F(1)-ATPase affords us insight into the generation of the nucleophile OH(-) prior to ATP hydrolysis. As a result, the ATP molecule was found to be the final proton acceptor. In the simulated pathway, the transfer of a proton to the nucleotide was not direct but occurred via a second water molecule in a manner similar to the Grotthuss mechanism proposed for proton diffusion. Residue ß-Glu 188, previously described as the putative catalytic base, was found to be involved in the stabilization of a transient hydronium ion during water activation. Simulations in the absence of the carboxylate moiety of ß-Glu 188 support this role.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/enzimologia , Simulação de Dinâmica Molecular , ATPases Translocadoras de Prótons/metabolismo , Água/metabolismo , Animais , Bovinos , Ácido Glutâmico/química , Hidrólise , Mitocôndrias/química , ATPases Translocadoras de Prótons/química , Prótons , Teoria Quântica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA