Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 246: 108456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610471

RESUMO

Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 µg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 µg/ml at 10 min and SA alone at 2000 µg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 µg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Caspase 3 , Zinco , Óxido de Zinco/farmacologia , Nanopartículas Metálicas/uso terapêutico , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Equinococose/tratamento farmacológico
2.
Curr Pharm Des ; 25(30): 3225-3238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465276

RESUMO

Macrophages are one of the crucial mediators of the immune response in different physiological and pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders, it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of natural compounds on macrophage polarization.


Assuntos
Macrófagos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Citocinas , Humanos , Inflamação , Ativação de Macrófagos , Macrófagos/classificação
3.
J Cell Physiol ; 233(2): 888-900, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28084621

RESUMO

Early diagnostic is one of the most important steps in cancer therapy which helps to design and choose a better therapeutic approach. The finding of biomarkers in various levels including genomics, transcriptomics, and proteomics levels could provide better treatment for various cancers such as chronic lymphocytic leukemia (CLL). The CLL is the one of main lymphoid malignancies which is specified by aggregation of mature B lymphocytes. Among different biomarkers (e.g., CD38, chromosomes abnormalities, ZAP-70, TP53, and microRNA [miRNA]), miRNAs have appeared as new diagnostic and therapeutic biomarkers in patients with the CLL disease. Multiple lines of evidence indicated that deregulation of miRNAs could be associated with pathological events which are present in the CLL. These molecules have an effect on a variety of targets such as Bcl2, c-fos, c-Myc, TP53, TCL1, and STAT3 which play critical roles in the CLL pathogenesis. It has been shown that expression of miRNAs could lead to the activation of B cells and B cell antigen receptor (BCR). Moreover, exosomes containing miRNAs are one of the other molecules which could contribute to BCR stimulation and progression of CLL cells. Hence, miRNAs and exosomes released from CLL cells could be used as potential diagnostic and therapeutic biomarkers for CLL. This critical review focuses on a very important aspect of CLL based on biomarker discovery covers the pros and cons of using miRNAs as important diagnostics and therapeutics biomarkers for this deadly disease.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Animais , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Técnicas de Diagnóstico Molecular , Valor Preditivo dos Testes , Prognóstico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA