Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26692, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434081

RESUMO

Development of the multigeneration plants based on the simultaneous production of water and energy can solve many of the current problems of these two major fields. In addition, the integration of fossil power plants with waste heat recovery processes in order to prevent the release of pollutants in the environment can simultaneously cover the environmental and thermodynamic improvements. Besides, the addition of a carbon dioxide (CO2) capturing cycles with such plants is a key issue towards a sustainable environment. Accordingly, a novel waste heat recovery-based multigeneration plant integrated with a carbon dioxide separation/liquefaction cycle is proposed and investigated under multi-variable assessments (energy/exergy, financial, and environmental). The offered multigeneration system is able to generate various beneficial outputs (electricity, liquefied CO2 (L-CO2), natural gas (NG), and freshwater). In the offered system, the liquified natural gas (LNG) cold energy is used to carry out condensation processes, which is a relatively new idea. Based on the results, the outputs rates of net power, NG, L-CO2, and water were determined to be approximately 42.72 MW and 18.01E+03, 612 and 3.56E+03 kmol/h, respectively. Moreover, the multigeneration plant was efficient about 32.08% and 87.72%, respectively, in terms of energy and exergy. Economic estimates indicated that the unit product costs of electricity and liquefied carbon dioxide production, respectively, were around 0.0466 USD per kWh and 0.0728 USD per kg-CO2. Finally, the total released CO2 was about 0.034 kg per kWh. According to a comprehensive comparison, the offered multigeneration plant can provide superior environmental, thermodynamic, and economic performances compared to similar plants. Moreover, there was no need to purchase electricity from the grid.

2.
ACS Biomater Sci Eng ; 4(5): 1797-1811, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445336

RESUMO

Hyperthermia treatment induced by magnetic mesoporous glasses has been applied as a potential therapeutic approach for bone defects due to malignant tumors. The objective of this study was to synthesize and characterize the structural and biological properties of magnetic bioactive glasses (BGs) for producing multifunctional materials. The effect of the addition of copper (Cu) to the bioactive glass composition was also evaluated. Fe BG and FeCu BG as magnetic mesoporous BGs, and Cu BG as mesoporous BG were synthesized and dried by template sol-gel method. Then the synthesized bioglasses were characterized and analyzed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive electron disperse spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and vibrating sample magnetometer (VSM). In addition, the antibacterial behavior, cytotoxicity assay (MTT test), proliferation assay of HUVEC cell assay, and bioactivity (ALP activity test) of the synthesized BGs were evaluated. The characterization results exhibited that the synthesized powders formed mesoporous glasses with nanoparticle morphology, good surface area, and magnetic properties. The synthesized BGs also demonstrated suitable biological behavior. The magnetic saturation of bioactive glasses was increased by the addition of copper oxide. A two-phase structure was observed for the magnetic glasses compared to the copper-containing glasses, thus making them suitable for drug delivery systems. The antibacterial behavior was found to be better for the Cu BG and Fe BG compared to the FeCu BG. However, the least amount of cytotoxicity was observed for the Fe BG and FeCu BG, compared to the Cu BG. In addition, the Fe-containing BGs compared with the control group showed a lack of HUVEC cell proliferation and angiogenesis motivation. From the ALP assay, higher bioactivity for the magnetic bioglasses in the presence of mesenchymal cells was found. From the results of this in vitro study, the Cu-containing magnetic bioglass (FeCu BG) could be considered as a new generation of magnetic glasses for inducing hyperthermia in treatment of bone defects due to malignant tumors. However, further in vitro and in vivo studies are required to confirm their applications in healing of bone defects and tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA