Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochimie ; 212: 21-30, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36997147

RESUMO

Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.


Assuntos
Peróxido de Hidrogênio , Leucemia , Humanos , Peróxido de Hidrogênio/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células K562 , Leucemia/tratamento farmacológico , Leucemia/genética , Estresse Oxidativo , Peptídeos , RNA Mensageiro
2.
Braz. j. microbiol ; 46(2): 347-354, Apr-Jun/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-749729

RESUMO

Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.


Assuntos
Bacillus/isolamento & purificação , Produtos Biológicos/análise , Brevibacterium/isolamento & purificação , Hidrolases/análise , Microbiologia do Solo , Cloreto de Sódio/metabolismo , Staphylococcus/isolamento & purificação , Brasil , Bacillus/classificação , Bacillus/genética , Bacillus/metabolismo , Brevibacterium/classificação , Brevibacterium/genética , Brevibacterium/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , /genética , Análise de Sequência de DNA , Solo , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA