Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 28(6): 647-58, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24697898

RESUMO

Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Assuntos
Movimento Celular/fisiologia , Cílios/fisiologia , Endossomos/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Transferrina/metabolismo , Transdução de Sinais , Receptor Smoothened
2.
PLoS Genet ; 8(12): e1003071, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236288

RESUMO

The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species.


Assuntos
Drosophila , Redes Reguladoras de Genes , Dor Nociceptiva , Fosfolipídeos , Transdução de Sinais , Animais , Capsaicina/toxicidade , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Drosophila/genética , Drosophila/fisiologia , Temperatura Alta , Humanos , Hipersensibilidade/genética , Camundongos , Neurônios Aferentes/metabolismo , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/fisiopatologia , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Fosfolipídeos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia
3.
Blood ; 118(4): 1099-108, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21551229

RESUMO

In phagocytes, GTPases of the Rac family control crucial antimicrobial functions. The RacGAP ArhGAP15 negatively modulates Rac activity in leukocytes, but its in vivo role in innate immunity remains largely unknown. Here we show that neutrophils and macrophages derived from mice lacking ArhGAP15 presented higher Rac activity but distinct phenotypes. In macrophages, the loss of ArhGAP15 induced increased cellular elongation and membrane protrusions but did not modify chemotactic responses. Conversely, the lack of ArhGAP15 in neutrophils affected critical Rac-dependent antimicrobial functions, specifically causing enhanced chemotactic responses, straighter directional migration, amplified reactive oxygen species production, increased phagocytosis, and improved bacterial killing. In vivo, in a model of severe abdominal sepsis, these effects contributed to increase neutrophil recruitment to the site of infection, thereby limiting bacterial growth, controlling infection spread, reducing systemic inflammation, and ultimately improving survival in ArhGAP15-null mice. Altogether, these results demonstrate the relevance of ArhGAP15 in the selective regulation of multiple neutrophil functions, suggesting that ArhGAP15 targeting might be beneficial in specific pathologic settings like severe sepsis.


Assuntos
Proteínas Ativadoras de GTPase/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Sepse/imunologia , Animais , Western Blotting , Separação Celular , Quimiotaxia de Leucócito/fisiologia , Citometria de Fluxo , Proteínas Ativadoras de GTPase/metabolismo , Imuno-Histoquímica , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Immunol Lett ; 131(1): 33-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20347874

RESUMO

Phosphatidylinositol-3-kinase gamma (PI3Kgamma) is the major PI3K that is activated in response to chemoattractants. It is responsible for the migration of leukocytes from the bloodstream to sites of injury or infection. Constant migration of new leukocytes to the intestinal mucosa may be an important factor in maintenance of inflammation and tissue damage in inflammatory bowel disease (IBD). Reducing this influx, for example by inhibition of PI3Kgamma, might therefore be a potential goal for therapy. Here we investigated the role of PI3Kgamma in the migration of leukocytes to sites of intestinal inflammation. We induced colitis in mice with a point mutation that inactivates PI3Kgamma enzymatic activity ('kinase-dead') by oral administration of dextran sodium sulphate (DSS). Mice were treated with 1.5% DSS for 1 week and effects on cytokine production, leukocyte recruitment and disease severity were examined. Both clinical and histological parameters showed that the severity of colitis was significantly reduced in PI3Kgamma-kinase-dead mice compared to controls. Although mutant mice had a less severe colitis than controls they produced significantly more pro-inflammatory Th1 cytokines such as Il-12, Tnfalpha and Ifngamma and more Il-10. PI3Kgamma mutant mice showed increased numbers of resident macrophages and T cells in the colonic lamina propria in an unstressed condition but failed to recruit new leukocytes to the mucosa upon treatment with DSS despite the increased cytokine levels. These results suggest that PI3Kgamma plays a critical role in lamina propria leukocyte trafficking and that loss of PI3Kgamma-activity ameliorates DSS-induced colitis in mice.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/genética , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/farmacologia , Leucócitos/imunologia , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Colite/enzimologia , Colite/imunologia , Colo/enzimologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/imunologia , Mucosa/patologia , Mutação , Índice de Gravidade de Doença
5.
Sci Signal ; 1(36): ra3, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18780892

RESUMO

The phosphoinositide 3-kinase (PI3K) pathway crucially controls metabolism and cell growth. Although different PI3K catalytic subunits are known to play distinct roles, the specific in vivo function of p110beta (the product of the PIK3CB gene) is not clear. Here, we show that mouse mutants expressing a catalytically inactive PIK3CB(K805R) mutant survived to adulthood but showed growth retardation and developed mild insulin resistance with age. Pharmacological and genetic analyses of p110beta function revealed that p110beta catalytic activity is required for PI3K signaling downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors as well as to sustain long-term insulin signaling. In addition, PIK3CB(K805R) mice were protected in a model of ERBB2-driven tumor development. These findings indicate an unexpected role for p110beta catalytic activity in diabetes and cancer, opening potential avenues for therapeutic intervention.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Resistência à Insulina/fisiologia , Neoplasias Mamárias Experimentais/enzimologia , Fosfatidilinositol 3-Quinases/fisiologia , Envelhecimento/fisiologia , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases , Endocitose , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Mutantes , Fosfatidilinositol 3-Quinases/genética , Receptor ErbB-2/fisiologia , Transdução de Sinais
6.
Cell ; 118(3): 375-87, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15294162

RESUMO

The G protein-coupled, receptor-activated phosphoinositide 3-kinase gamma (PI3Kgamma) mediates inflammatory responses and negatively controls cardiac contractility by reducing cAMP concentration. Here, we report that mice carrying a targeted mutation in the PI3Kgamma gene causing loss of kinase activity (PI3KgammaKD/KD) display reduced inflammatory reactions but no alterations in cardiac contractility. We show that, in PI3KgammaKD/KD hearts, cAMP levels are normal and that PI3Kgamma-deficient mice but not PI3KgammaKD/KD mice develop dramatic myocardial damage after chronic pressure overload induced by transverse aortic constriction (TAC). Finally, our data indicate that PI3Kgamma is an essential component of a complex controlling PDE3B phosphodiesterase-mediated cAMP destruction. Thus, cardiac PI3Kgamma participates in two distinct signaling pathways: a kinase-dependent activity that controls PKB/Akt as well as MAPK phosphorylation and contributes to TAC-induced cardiac remodeling, and a kinase-independent activity that relies on protein interactions to regulate PDE3B activity and negatively modulates cardiac contractility.


Assuntos
Isoenzimas/metabolismo , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Movimento Celular/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Hipertensão/metabolismo , Isoenzimas/genética , Leucócitos/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA