Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G265-G278, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431575

RESUMO

Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.


Assuntos
Cisteína Proteases , Pancreatite Alcoólica , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Etanol/farmacologia , Pancreatite Alcoólica/genética , Regulação para Cima
2.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34610499

RESUMO

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Assuntos
Pâncreas , Pancreatite , Células Acinares/metabolismo , Animais , Autofagossomos , Autofagia , Camundongos , Pancreatite/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/farmacologia
3.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935577

RESUMO

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Assuntos
Células Acinares , Técnicas de Cultura de Células , Pancreatite , Células Acinares/citologia , Células Acinares/metabolismo , Cadáver , Células Cultivadas , Humanos , Pâncreas/citologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Proteômica
4.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G524-G536, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705806

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC.NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adaptação Fisiológica , Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Mutação/fisiologia , Fosforilação Oxidativa , Estresse Oxidativo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
5.
J Biol Chem ; 292(19): 7828-7839, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28242757

RESUMO

Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.


Assuntos
Pancreatite/metabolismo , Proteínas R-SNARE/metabolismo , Tripsina/química , Animais , Endossomos/metabolismo , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Tripsinogênio/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
6.
Tumour Biol ; 37(6): 8097-105, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26715269

RESUMO

Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo V/genética , Neoplasias/genética , Neoplasias/patologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfitos/química
7.
Inflamm Res ; 62(12): 1063-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24061501

RESUMO

INTRODUCTION: Serum amyloid A (SAA), secreted group IIA phospholipase A2 (sPLA2-IIA), and C-reactive protein (CRP) are acute-phase proteins whose serum concentrations increase not only during inflammatory disorders, but also in the course of malignant diseases. MATERIALS AND METHODS: In this study we analyzed serum levels of these inflammatory markers along with prostate-specific antigens (PSA) in patients with benign prostatic hyperplasia (BPH, n = 55), localized prostate cancers (PCa, n = 55), and metastatic prostate cancers (mPCa, n = 27) using immunological assays. RESULTS: We found that in comparison to healthy individuals (n = 55), patients with BPH, PCa and mPCa have elevated serum levels of SAA, sPLA2-IIA, and CRP, in addition to elevated levels of PSA. Significant differences with respect to inflammatory biomarkers were found between localized and metastatic PCa (p < 0.001), suggesting a prognostic value of these parameters. In addition, serum concentrations of SAA and sPLA2-IIA positively correlate with CRP in BPH patients (p < 0.05) and in patients with PCa and mPCa (p < 0.001), but not with PSA levels, Gleason score, or tumor stage, emphasizing a role of SAA and sPLA2-IIA as circulating biomarkers of inflammation rather than of neoplastic transformation. In contrast to PSA, which differed significantly between BPH and localized PCa patients (p < 0.01), such a difference was not found for SAA, sPLA2-IIA, and CRP. In order to elucidate whether the elevated levels of SAA and sPLA2-IIA can be caused by cancer cell-associated synthesis, in vitro studies were performed. These analyses demonstrated the expression of SAA and sPLA2-IIA in LNCaP and PC-3 prostate cell lines, which can be further upregulated by pro-inflammatory cytokines in a cell type-dependent manner. This might suggest that, in addition to the hepatic origin, SAA and sPLA2-IIA can also be synthesized and secreted by prostatic cancer tissue itself. CONCLUSION: The results of the present study emphasize the utility of SAA, sPLA2-IIA, and CRP as circulating biomarkers of inflammation during BPH development and PCa progression.


Assuntos
Proteína C-Reativa/análise , Fosfolipases A2 do Grupo II/sangue , Hiperplasia Prostática/sangue , Neoplasias da Próstata/sangue , Proteína Amiloide A Sérica/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/sangue , Adulto Jovem
8.
Gastroenterology ; 144(2): 437-446.e6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103769

RESUMO

BACKGROUND & AIMS: Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS: We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD(-/-) mice by a combination of ethanol and CCK. RESULTS: Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD(-/-) acinar cells. Ethanol and CCK activated MPTP through different mechanisms-ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca(2+). CypD(-/-) mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS: Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis.


Assuntos
Etanol/farmacocinética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Alcoólica/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Modelos Animais de Doenças , Etanol/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/etiologia , Pancreatite Necrosante Aguda/patologia , Pancreatite Alcoólica/complicações , Pancreatite Alcoólica/patologia
9.
Int J Biol Macromol ; 51(5): 908-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22910577

RESUMO

The objective of this study is analysis of stability and antioxidant and antiradical activities of the gossypol derivative - megosin conjugated with N-polyvinylpyrrolidone (PVP). The results of study have shown the greater stability of megosin+PVP than megosin in aqueous solution of wide range of pH. Here we also demonstrated that megosin+PVP, named rometin, possess high antioxidant activity in the same range as well known antioxidant trolox as determined by its ability to scavenge free ABTS(+) and DPPH radicals in vitro. In addition, megosin+PVP was able to prevent accumulation of products of lipid peroxidation (thiobarbituric acid reactive substances and diene conjugates) and lysophospholipids formation in mitochondria membranes caused by CCl(4)-induced oxidative stress in rat liver in vivo. Furthermore, megosin+PVP rescued mitochondrial functions, such as respiration and oxidative phosphorylation, which declined after CCl(4) administration. Thus we present that the conjugation of megosin to PVP increase its stability and remain antioxidant activity in vivo and in vitro.


Assuntos
Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Gossipol/análogos & derivados , Povidona/química , Animais , Antipaína , Benzotiazóis/química , Compostos de Bifenilo/química , Tetracloreto de Carbono/toxicidade , Estabilidade de Medicamentos , Gossipol/química , Gossipol/farmacologia , Fígado/citologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Picratos/química , Ratos , Ratos Wistar , Ácidos Sulfônicos/química , Água/química
10.
Inflammation ; 35(3): 1113-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22189868

RESUMO

Secreted group IIA phospholipase A(2) (sPLA(2)-IIA) is markedly up-regulated in human prostate cancer (PCa) specimens and in some PCa-derived cell lines, indicating an important role of this enzyme in tumourigenesis. In this study, we measured levels of sPLA(2)-IIA, C-reactive protein (CRP), and prostate-specific antigen (PSA) in serum samples obtained from patients with benign prostatic hyperplasia (BPH) and with PCa of different stages. We found that serum levels of sPLA(2)-IIA and CRP in BPH and PCa patients were significantly elevated compared to those of healthy individuals, but the concentrations of these inflammatory biomarkers did not differ between patients with BPH or PCa. Furthermore, serum levels of sPLA(2)-IIA correlated with concentrations of CRP, but not with PSA, Gleason grade or tumour stage. In conclusion, these findings suggest that cancer-related changes are not exclusive factors contributing to elevated serum sPLA(2)-IIA levels and emphasize the utility of sPLA(2)-IIA as a circulating marker of inflammation in patients with BPH and PCa.


Assuntos
Biomarcadores Tumorais/sangue , Fosfolipases A2 Secretórias/sangue , Hiperplasia Prostática/enzimologia , Neoplasias da Próstata/enzimologia , Idoso , Proteína C-Reativa/análise , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia
11.
Alcohol Clin Exp Res ; 35(5): 830-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284675

RESUMO

Alcohol abuse is one of the most common causes of pancreatitis. The risk of developing alcohol-induced pancreatitis is related to the amount and duration of drinking. However, only a small portion of heavy drinkers develop disease, indicating that other factors (genetic, environmental, or dietary) contribute to disease initiation. Epidemiologic studies suggest roles for cigarette smoking and dietary factors in the development of alcoholic pancreatitis. The mechanisms underlying alcoholic pancreatitis are starting to be understood. Studies from animal models reveal that alcohol sensitizes the pancreas to key pathobiologic processes that are involved in pancreatitis. Current studies are focussed on the mechanisms responsible for the sensitizing effect of alcohol; recent findings reveal disordering of key cellular organelles including endoplasmic reticulum, mitochondria, and lysosomes. As our understanding of alcohol's effects continue to advance to the level of molecular mechanisms, insights into potential therapeutic strategies will emerge providing opportunities for clinical benefit.


Assuntos
Alcoolismo/patologia , Pancreatite Alcoólica/patologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Alcoolismo/complicações , Alcoolismo/metabolismo , Animais , Morte Celular/fisiologia , Humanos , Pancreatite Alcoólica/etiologia , Pancreatite Alcoólica/metabolismo , Transporte Proteico/fisiologia
12.
Exp Cell Res ; 315(11): 1975-89, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19331832

RESUMO

Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (DeltaPsim) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.


Assuntos
Mitocôndrias/metabolismo , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Necrosante Aguda/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Proteínas do Capsídeo , Caspase 3/metabolismo , Ceruletídeo/toxicidade , Citocromos c/metabolismo , Primers do DNA/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Necrose , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sincalida/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
13.
J Biol Chem ; 281(6): 3370-81, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16339139

RESUMO

Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of "programmed" necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.


Assuntos
Apoptose , Caspases/metabolismo , Necrose , Pancreatite/patologia , Amilases/sangue , Animais , Caspase 3 , Caspase 7 , Caspase 9 , Morte Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Inflamação , Lipase/sangue , Lipase/metabolismo , Masculino , Camundongos , Pâncreas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Especificidade da Espécie , Fatores de Tempo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA