Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 32: 671-688, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37215154

RESUMO

Reactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate ß-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to ß-globin exon-1 (ßE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets. PRR-ßE1-edited hematopoietic stem and progenitor cells (HSPCs) retained their genome integrity and their engraftment potential to repopulate for long-term hematopoiesis in immunocompromised mice producing HbF positive cells in vivo. Furthermore, PRR-ßE1 gene editing is feasible without ex vivo HSPC culture. Importantly, the editing induced therapeutically significant levels of HbF to reverse the phenotypes of both sickle cell disease and ß-thalassemia major. These findings imply that PRR-ßE1 gene editing of patient HSPCs could lead to improved therapeutic outcomes for ß-hemoglobinopathy gene therapy.

2.
Front Immunol ; 13: 792684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359982

RESUMO

Transplantation of allogenic hematopoietic stem and progenitor cells (HSPCs) with C-C chemokine receptor type 5 (CCR5) Δ32 genotype generates HIV-1 resistant immune cells. CCR5 gene edited autologous HSPCs can be a potential alternative to hematopoietic stem cell transplantation (HSCT) from HLA-matched CCR5 null donor. However, the clinical application of gene edited autologous HSPCs is critically limited by the quality of the graft, as HIV also infects the HSPCs. In this study, by using mobilized HSPCs from healthy donors, we show that the CD34+CD90+ hematopoietic stem cells (HSCs) express 7-fold lower CD4/CCR5 HIV receptors, higher levels of SAMHD1 anti-viral restriction factor, and possess lower susceptibility to HIV infection than the CD34+CD90- hematopoietic progenitor cells. Further, the treatment with small molecule cocktail of Resveratrol, UM729 and SR1(RUS) improved the in vivo engraftment potential of CD34+CD90+ HSCs. To demonstrate that CD34+CD90+ HSC population as an ideal graft for HIV gene therapy, we sort purified CD34+CD90+ HSCs, treated with RUS and then gene edited the CCR5 with single sgRNA. On transplantation, 100,000 CD34+CD90+ HSCs were sufficient for long-term repopulation of the entire bone marrow of NBSGW mice. Importantly, the gene editing efficiency of ~90% in the infused product was maintained in vivo, facilitating the generation of CCR5 null immune cells, resistant to HIV infection. Altogether, CCR5 gene editing of CD34+CD90+ HSCs provide an ideal gene manipulation strategy for autologous HSCT based gene therapy for HIV infection.


Assuntos
Infecções por HIV , Animais , Antígenos CD34/metabolismo , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos
3.
Hum Gene Ther ; 33(3-4): 188-201, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34486377

RESUMO

CD34+CD133+CD90+ hematopoietic stem cells (HSCs) are responsible for long-term multilineage hematopoiesis, and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the ex vivo culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. In this study, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34+CD133+CD90+ HSCs over other subpopulations of adult HSPCs in ex vivo culture. The preferential expansion enriches the HSCs in ex vivo culture, enhances the adhesion, and results in a sixfold increase in the long-term engraftment in NSG mice. Further, the culture-enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold in vivo. The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells in vivo. This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sangue Fetal , Terapia Genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Bioorg Chem ; 82: 178-191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30326400

RESUMO

Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.


Assuntos
Ácido Ascórbico/farmacologia , DNA/química , Sequestradores de Radicais Livres/farmacologia , Lipossomos/farmacologia , Tensoativos/farmacologia , alfa-Tocoferol/farmacologia , Animais , Ácido Ascórbico/síntese química , Ácido Ascórbico/química , Ácido Ascórbico/toxicidade , Células CHO , Linhagem Celular Tumoral , Cricetulus , DNA/genética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipossomos/síntese química , Lipossomos/química , Lipossomos/toxicidade , Camundongos , Tensoativos/síntese química , Tensoativos/química , Tensoativos/toxicidade , Transfecção/métodos , alfa-Tocoferol/síntese química , alfa-Tocoferol/química , alfa-Tocoferol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA