Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180477

RESUMO

Kinetochores connect chromosomes and spindle microtubules to maintain genomic integrity through cell division. Crosstalk between the minus-end directed motor dynein and kinetochore-microtubule attachment factors promotes accurate chromosome segregation by a poorly understood pathway. Here, we identify a linkage between the intrinsically disordered protein Spc105 (KNL1 orthologue) and dynein using an optogenetic oligomerization assay. Core pools of the checkpoint protein BubR1 and the adaptor complex RZZ contribute to the linkage. Furthermore, a minimal segment of Spc105 with a propensity to multimerize and which contains protein binding motifs is sufficient to link Spc105 to RZZ/dynein. Deletion of the minimal region from Spc105 compromises the recruitment of its binding partners to kinetochores and elevates chromosome missegregation due to merotelic attachments. Restoration of normal chromosome segregation and localization of BubR1 and RZZ requires both protein binding motifs and oligomerization of Spc105. Together, our results reveal that higher-order multimerization of Spc105 contributes to localizing a core pool of RZZ that promotes accurate chromosome segregation.


Assuntos
Segregação de Cromossomos , Drosophila , Dineínas , Proteínas Intrinsicamente Desordenadas , Cinetocoros , Divisão Celular , Dineínas/genética , Drosophila/genética , Animais
2.
J Biol Chem ; 294(31): 11876-11891, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31201271

RESUMO

Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Animais , Técnicas Biossensoriais/métodos , Fertilização , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ionomicina/farmacologia , Camundongos , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo
3.
Elife ; 82019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30758285

RESUMO

Microtubules (MTs) are essential for cleavage furrow positioning during cytokinesis, but the mechanisms by which MT-derived signals spatially define regions of cortical contractility are unresolved. In this study cytokinesis regulators visualized in Drosophila melanogaster (Dm) cells were found to localize to and track MT plus-ends during cytokinesis. The RhoA GEF Pebble (Dm ECT2) did not evidently tip-track, but rather localized rapidly to cortical sites contacted by MT plus-tips, resulting in RhoA activation and enrichment of myosin-regulatory light chain. The MT plus-end localization of centralspindlin was compromised following EB1 depletion, which resulted in a higher incidence of cytokinesis failure. Centralspindlin plus-tip localization depended on the C-terminus and a putative EB1-interaction motif (hxxPTxh) in RacGAP50C. We propose that MT plus-end-associated centralspindlin recruits a cortical pool of Dm ECT2 upon physical contact to activate RhoA and to trigger localized contractility.


Assuntos
Citocinese , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Anáfase/efeitos dos fármacos , Animais , Concanavalina A/farmacologia , Citocinese/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/efeitos dos fármacos , Miosinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Biol Bull ; 231(1): 61-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27638695

RESUMO

During cytokinesis, aurora B kinase (ABK) relocalizes from centromeres to the spindle midzone, where it is thought to provide a spatial cue for cytokinesis. While global ABK inhibition in Drosophila S2 cells results in macro- and multi-nucleated large cells, mislocalization of midzone ABK (mABK) by depletion of Subito (Drosophila MKLP2) does not cause notable cytokinesis defects. Subito depletion was, therefore, used to investigate the contribution of other molecules and redundant pathways to cytokinesis in the absence of mABK. Inhibiting potential polar relaxation pathways via removal of centrosomes (CNN RNAi) or a kinetochore-based phosphatase gradient (Sds22 RNAi) did not result in cytokinesis defects on their own or in combination with loss of mABK. Disruption of aurora A kinase (AAK) activity resulted in midzone assembly defects, but did not significantly affect contractile ring positioning or cytokinesis. Live-cell imaging of a Förster resonance energy transfer (FRET)-based aurora kinase phosphorylation sensor revealed that midzone substrates were less phosphorylated in AAK-inhibited cells, despite the fact that midzone levels of active phosphorylated ABK (pABK) were normal. Interestingly, in the absence of mABK, an increased number of binucleated cells were observed following AAK inhibition. The data suggest that equatorial stimulation rather than polar relaxation mechanisms is the major determinant of contractile ring positioning and high-fidelity cytokinesis in Drosophila S2 cells. Furthermore, we propose that equatorial stimulation is mediated primarily by the delivery of factors to the cortex by noncentrosomal microtubules (MTs), as well as a midzone-derived phosphorylation gradient that is amplified by the concerted activities of mABK and a soluble pool of AAK.


Assuntos
Aurora Quinase A/metabolismo , Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Drosophila , Proteínas de Drosophila/genética , Transferência Ressonante de Energia de Fluorescência , Cinesinas/genética , Microtúbulos/metabolismo , Fosforilação , Interferência de RNA
6.
Curr Biol ; 25(14): 1842-51, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26166783

RESUMO

Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-MT attachments are commonplace but are often corrected prior to anaphase. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK), typically occurs near spindle poles; however, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles, can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles. Hence, there is a conundrum: erroneous kinetochore-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome misalignment and an increased incidence of erroneous kinetochore-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated. We propose that an AAK activity gradient contributes to correcting mal-oriented kinetochore-MT attachments in the vicinity of spindle poles.


Assuntos
Aurora Quinase A/genética , Polaridade Celular , Posicionamento Cromossômico , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animais , Aurora Quinase A/metabolismo , Células Cultivadas , Cromossomos de Insetos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Regulação da Expressão Gênica , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
7.
Front Oncol ; 3: 187, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23888285

RESUMO

Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.

8.
Curr Biol ; 19(4): 287-96, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19230671

RESUMO

BACKGROUND: Bipolar spindle assembly is critical for achieving accurate segregation of chromosomes. In the absence of centrosomes, meiotic spindles achieve bipolarity by a combination of chromosome-initiated microtubule nucleation and stabilization and motor-driven organization of microtubules. Once assembled, the spindle structure is maintained on a relatively long time scale despite the high turnover of the microtubules that comprise it. To study the underlying mechanisms responsible for spindle assembly and steady-state maintenance, we used microneedle manipulation of preassembled spindles in Xenopus egg extracts. RESULTS: When two meiotic spindles were brought close enough together, they interacted, creating an interconnected microtubule structure with supernumerary poles. Without exception, the perturbed system eventually re-established bipolarity, forming a single spindle of normal shape and size. Bipolar spindle fusion was blocked when cytoplasmic dynein function was perturbed, suggesting a critical role for the motor in this process. The fusion of Eg5-inhibited monopoles also required dynein function but only occurred if the initial interpolar separation was less than twice the microtubule radius of a typical monopole. CONCLUSIONS: Our experiments uniquely illustrate the architectural plasticity of the spindle and reveal a robust ability of the system to attain a bipolar morphology. We hypothesize that a major mechanism driving spindle fusion is dynein-mediated sliding of oppositely oriented microtubules, a novel function for the motor, and posit that this same mechanism might also be involved in normal spindle assembly and homeostasis.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Polaridade Celular , Segregação de Cromossomos , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Mol Biol Cell ; 18(2): 464-74, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17108322

RESUMO

We have studied assembly of chromatin using Xenopus egg extracts and single DNA molecules held at constant tension by using magnetic tweezers. In the absence of ATP, interphase extracts were able to assemble chromatin against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations, indicating our experiments were in mechanochemical equilibrium. Roughly 50-nm (150-base pair) lengthening events dominated force-driven disassembly, suggesting that the assembled fibers are chiefly composed of nucleosomes. The ATP-depleted reaction was able to do mechanical work of 27 kcal/mol per 50 nm step, which provides an estimate of the free energy difference between core histone octamers on and off DNA. Addition of ATP led to highly dynamic behavior with time courses exhibiting processive runs of assembly and disassembly not observed in the ATP-depleted case. With ATP present, application of forces of 2 pN led to nearly complete fiber disassembly. Our study suggests that ATP hydrolysis plays a major role in nucleosome rearrangement and removal and that chromatin in vivo may be subject to highly dynamic assembly and disassembly processes that are modulated by DNA tension.


Assuntos
Trifosfato de Adenosina/química , Montagem e Desmontagem da Cromatina , Cromatina/química , Animais , Extratos Celulares/química , Hidrólise , Magnetismo , Micromanipulação/métodos , Nucleossomos/química , Óvulo , Xenopus
10.
J Cell Biol ; 169(6): 859-69, 2005 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-15967810

RESUMO

During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis.


Assuntos
Segregação de Cromossomos/genética , Cromossomos/genética , Histonas/genética , Mitose/genética , Oócitos/metabolismo , Adenosina Trifosfatases/metabolismo , Anáfase/genética , Animais , Extratos Celulares/química , Centrômero/patologia , Centrômero/fisiologia , Centrômero/ultraestrutura , Cromossomos/ultraestrutura , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Cinesinas/metabolismo , Cinetocoros/patologia , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Modelos Biológicos , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Oócitos/química , Fuso Acromático/genética , Fuso Acromático/patologia , Fuso Acromático/ultraestrutura , Xenopus laevis
11.
J Cell Biol ; 161(6): 1041-51, 2003 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-12821643

RESUMO

Chromosome condensation is required for the physical resolution and segregation of sister chromatids during cell division, but the precise role of higher order chromatin structure in mitotic chromosome functions is unclear. Here, we address the role of the major condensation machinery, the condensin complex, in spindle assembly and function in Xenopus laevis egg extracts. Immunodepletion of condensin inhibited microtubule growth and organization around chromosomes, reducing the percentage of sperm nuclei capable of forming spindles, and causing dramatic defects in anaphase chromosome segregation. Although the motor CENP-E was recruited to kinetochores pulled poleward during anaphase, the disorganized chromosome mass was not resolved. Inhibition of condensin function during anaphase also inhibited chromosome segregation, indicating its continuous requirement. Spindle assembly around DNA-coated beads in the absence of kinetochores was also impaired upon condensin inhibition. These results support an important role for condensin in establishing chromosomal architecture necessary for proper spindle assembly and chromosome segregation.


Assuntos
Adenosina Trifosfatases/deficiência , Divisão Celular/fisiologia , Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/deficiência , Células Eucarióticas/metabolismo , Fuso Acromático/metabolismo , Adenosina Trifosfatases/genética , Anáfase/genética , Animais , Extratos Celulares , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Cinetocoros/metabolismo , Substâncias Macromoleculares , Masculino , Microtúbulos/metabolismo , Complexos Multiproteicos , Oócitos , Transporte Proteico/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA