Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1863(6): 148559, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413247

RESUMO

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.


Assuntos
Mitocôndrias , Ácido Salicílico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
2.
Biology (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827158

RESUMO

There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla.

3.
J Exp Bot ; 72(6): 2242-2259, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33035327

RESUMO

Iron (Fe) toxicity is one of the most common mineral disorders affecting rice (Oryza sativa) production in flooded lowland fields. Oryza meridionalis is indigenous to northern Australia and grows in regions with Fe-rich soils, making it a candidate for use in adaptive breeding. With the aim of understanding tolerance mechanisms in rice, we screened a population of interspecific introgression lines from a cross between O. sativa and O. meridionalis for the identification of quantitative trait loci (QTLs) contributing to Fe-toxicity tolerance. Six putative QTLs were identified. A line carrying one introgression from O. meridionalis on chromosome 9 associated with one QTL was highly tolerant despite very high shoot Fe concentrations. Physiological, biochemical, ionomic, and transcriptomic analyses showed that the tolerance of the introgression lines could partly be explained by higher relative Fe retention in the leaf sheath and culm. We constructed the interspecific hybrid genome in silico for transcriptomic analysis and identified differentially regulated introgressed genes from O. meridionalis that could be involved in shoot-based Fe tolerance, such as metallothioneins, glutathione S-transferases, and transporters from the ABC and MFS families. This work demonstrates that introgressions of O. meridionalis into the O. sativa genome can confer increased tolerance to excess Fe.


Assuntos
Oryza , Austrália , Ferro , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética
4.
Genome ; 61(12): 857-865, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30427722

RESUMO

PLAC8 is a cysteine-rich protein described as a central mediator of tumor evolution in mammals; as such, it represents a promising candidate for diagnostic and therapeutic targeting. The human PLAC8 gene is also involved in contact hypersensitivity response and presents a role in psoriatic skin. In plants, PLAC8 motif-containing proteins are involved in the determination of organ size and growth, response to infection, Ca2+ influx, Cd resistance, and zinc detoxification. In general, PLAC8 motif-containing proteins present the conserved CCXXXXCPC or CLXXXXCPC region. However, there is no devised nomenclature for the PLAC8 motif-containing proteins. Here, through the analysis of 445 sequences, we show that PLAC8 motif-containing proteins constitute a unique gene family, and we propose a unified nomenclature. This is the first report indicating the existence of different groups of PLAC8 proteins, which we have called types I, II, and III. Type I genes are found in mammals, fungi, plants, and algae, and types II and III are exclusive to plants. Our study describes for the first time PLAC8 type III proteins. Whether these sequences maintain their known functional role or possess distinct functions of types I and II genes remains unclear.


Assuntos
Família Multigênica , Proteínas de Plantas/genética , Proteínas/genética , Terminologia como Assunto , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Humanos , Mamíferos/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/fisiologia , Proteínas/classificação , Proteínas/fisiologia
5.
Genet. mol. biol ; 41(1,supl.1): 355-370, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892484

RESUMO

Abstract sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.

6.
Genet. mol. biol ; 40(1,supl.1): 373-386, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892382

RESUMO

Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

7.
J Plant Physiol ; 201: 17-27, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27379617

RESUMO

The maintenance of H2O2 homeostasis and signaling mechanisms in plant subcellular compartments is greatly dependent on cytosolic ascorbate peroxidases (APX1 and APX2) and peroxisomal catalase (CAT) activities. APX1/2 knockdown plants were utilized in this study to clarify the role of increased cytosolic H2O2 levels as a signal to trigger the antioxidant defense system against oxidative stress generated in peroxisomes after 3-aminotriazole-inhibited catalase (CAT). Before supplying 3-AT, silenced APX1/2 plants showed marked changes in their oxidative and antioxidant profiles in comparison to NT plants. After supplying 3-AT, APX1/2 plants triggered up-expression of genes belonging to APX (OsAPX7 and OsAPX8) and GPX families (OsGPX1, OsGPX2, OsGPX3 and OsGPX5), but to a lower extent than in NT plants. In addition, APX1/2 exhibited lower glycolate oxidase (GO) activity, higher CO2 assimilation, higher cellular integrity and higher oxidation of GSH, whereas the H2O2 and lipid peroxidation levels remained unchanged. This evidence indicates that redox pre-acclimation displayed by silenced rice contributed to coping with oxidative stress generated by 3-AT. We suggest that APX1/2 plants were able to trigger alternative oxidative and antioxidant mechanisms involving signaling by H2O2, allowing these plants to display effective physiological responses for protection against oxidative damage generated by 3-AT, compared to non-transformed plants.


Assuntos
Aclimatação/efeitos dos fármacos , Amitrol (Herbicida)/toxicidade , Ascorbato Peroxidases/metabolismo , Catalase/antagonistas & inibidores , Citosol/enzimologia , Inativação Gênica/efeitos dos fármacos , Oryza/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Respiração Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes de Plantas , Glutationa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/fisiologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
8.
Plant Mol Biol ; 92(1-2): 193-207, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27325119

RESUMO

Phytocystatins are well-known inhibitors of C1A cysteine proteinases. However, previous research has revealed legumain (C13) protease inhibition via a carboxy-extended phytocystatin. Among the 12 phytocystatins genes in rice, OcXII is the only gene possessing this carboxy-terminal extension. The specific legumain inhibition activity was confirmed, in our work, using a recombinant OcXII harboring only the carboxy-terminal domain and this part did not exhibit any effect on papain-like activities. Meanwhile, rice plants silenced at the whole OcXII gene presented higher legumain and papain-like proteolytic activities, resulting in a faster initial seedling growth. However, when germinated under stressful alkaline conditions, OcXII-silenced plants exhibited impaired root formation and delayed shoot growth. Interestingly, the activity of OcXII promoter gene was detected in the rice seed scutellum region, and decreases with seedling growth. Seeds from these plants also exhibited slower growth at germination under ABA or alkaline conditions, while maintaining very high levels of OcXII transcriptional activation. This likely reinforces the proteolytic control necessary for seed germination and growth. In addition, increased legumain activity was detected in OcXII RNAi plants subjected to a fungal elicitor. Overall, the results of this study highlight the association of OcXII with not only plant development processes, but also with stress response pathways. The results of this study reinforce the bifunctional ability of carboxy-extended phytocystatins in regulating legumain proteases via its carboxy-extended domain and papain-like proteases by its amino-terminal domain.


Assuntos
Cistatinas/metabolismo , Cisteína Endopeptidases/metabolismo , Oryza/enzimologia , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Cistatinas/farmacologia , Oryza/metabolismo , Papaína/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores
9.
J Integr Plant Biol ; 58(8): 737-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26799169

RESUMO

The physiological role of plant mitochondrial glutathione peroxidases is scarcely known. This study attempted to elucidate the role of a rice mitochondrial isoform (GPX1) in photosynthesis under normal growth and salinity conditions. GPX1 knockdown rice lines (GPX1s) were tested in absence and presence of 100 mM NaCl for 6 d. Growth reduction of GPX1s line under non-stressful conditions, compared with non-transformed (NT) plants occurred in parallel to increased H2 O2 and decreased GSH contents. These changes occurred concurrently with photosynthesis impairment, particularly in Calvin cycle's reactions, since photochemical efficiency did not change. Thus, GPX1 silencing and downstream molecular/metabolic changes modulated photosynthesis differentially. In contrast, salinity induced reduction in both phases of photosynthesis, which were more impaired in silenced plants. These changes were associated with root morphology alterations but not shoot growth. Both studied lines displayed increased GPX activity but H2 O2 content did not change in response to salinity. Transformed plants exhibited lower photorespiration, water use efficiency and root growth, indicating that GPX1 could be important to salt tolerance. Growth reduction of GPX1s line might be related to photosynthesis impairment, which in turn could have involved a cross talk mechanism between mitochondria and chloroplast originated from redox changes due to GPX1 deficiency.


Assuntos
Inativação Gênica , Glutationa Peroxidase/metabolismo , Mitocôndrias/metabolismo , Oryza/fisiologia , Fotossíntese , Proteínas de Plantas/metabolismo , Salinidade , Biomassa , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Gases/metabolismo , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/efeitos da radiação , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fenótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação
10.
Plant Sci ; 234: 22-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804806

RESUMO

Glutathione peroxidases are thiol-based enzymes that catalyze the reduction of H2O2 and hydroperoxides to H2O or alcohols, they mitigate the toxicity of these compounds to the cell mainly using thioredoxin as an electron donor. Additionally, certain redox sensor and signaling functions are being ascribed to these enzymes in prokaryotes, fungi, and plants. We review the evolutionary history, enzymatic and biochemical evidence that make GPX proteins, in addition to being peroxiredoxins, important candidates for acting as redox sensor proteins in plants: (i) the lower peroxidase activity of Cys-GPX; (ii) the thiol catalytic center; (iii) the capacity to interact with regulatory proteins. All these characteristics suggest that at the basal level, plant GPXs have an important role in redox signal transduction in addition to their peroxidase activity.


Assuntos
Glutationa Peroxidase/metabolismo , Transdução de Sinais , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo
11.
Mol Plant ; 7(4): 709-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24253199

RESUMO

Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³âº, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice.


Assuntos
Alumínio/toxicidade , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética
12.
Plant Signal Behav ; 7(10): 1263-6, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22902685

RESUMO

Under acidic soil conditions, aluminum (Al) becomes available to plants, which must cope with its toxicity by mechanisms involving both internal and external detoxification. Rice is the most Al-tolerant among the crop species, with Al detoxification being managed by both mechanisms. Recently, we focused on ASR (Abscisic acid, Stress and Ripening) gene expression analyses and observed increased ASR5 transcript levels in roots and shoots in response to Al. In addition, ASR5 RNAi knock down plants presented an Al-sensitive phenotype. A proteomic approach showed that ASR5 silencing affected several proteins related to photosynthesis in RNAi rice shoots. Furthermore, an ASR5-GFP fusion in rice protoplasts revealed for the first time a chloroplast localization of this protein. Because it is well known that Al induces photosynthetic dysfunction, here we discuss the hypothesis that ASR5 might be sequestered in the chloroplasts as an inactive transcription factor that could be released to the nucleus in response to Al to regulate genes related to photosynthesis.


Assuntos
Alumínio/toxicidade , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética/efeitos dos fármacos
13.
Plant Cell Environ ; 34(10): 1705-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21631533

RESUMO

Current studies, particularly in Arabidopsis, have demonstrated that mutants deficient in cytosolic ascorbate peroxidases (APXs) are susceptible to the oxidative damage induced by abiotic stress. In contrast, we demonstrate here that rice mutants double silenced for cytosolic APXs (APx1/2s) up-regulated other peroxidases, making the mutants able to cope with abiotic stress, such as salt, heat, high light and methyl viologen, similar to non-transformed (NT) plants. The APx1/2s mutants exhibited an altered redox homeostasis, as indicated by increased levels of H2O2 and ascorbate and glutathione redox states. Both mutant and NT plants exhibited similar photosynthesis (CO2) assimilation and photochemical efficiency) under both normal and stress conditions. Overall, the antioxidative compensatory mechanism displayed by the mutants was associated with increased expression of OsGpx genes, which resulted in higher glutathione peroxidase (GPX) activity in the cytosolic and chloroplastic fractions. The transcript levels of OsCatA and OsCatB and the activities of catalase (CAT) and guaiacol peroxidase (GPOD; type III peroxidases) were also up-regulated. None of the six studied isoforms of OsApx were up-regulated under normal growth conditions. Therefore, the deficiency in cytosolic APXs was effectively compensated for by up-regulation of other peroxidases. We propose that signalling mechanisms triggered in rice mutants could be distinct from those proposed for Arabidopsis.


Assuntos
Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Oryza/enzimologia , Ascorbato Peroxidases/genética , Dióxido de Carbono/metabolismo , Catalase/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Glutationa Peroxidase/genética , Homeostase , Peróxido de Hidrogênio/análise , Peroxidação de Lipídeos , Oryza/genética , Oryza/fisiologia , Oxirredução , Estresse Oxidativo , Fenótipo , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Deleção de Sequência , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima
14.
Appl Biochem Biotechnol ; 165(2): 652-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21590305

RESUMO

Erythropoietin (EPO) is a hormone belonging to a group of hematopoietic growth factors that control the proliferation and differentiation of bone marrow cells. It induces the production of erythrocytes, thereby increasing the amount of circulating hemoglobin and oxygen. Previous attempts to transgenically express human EPO in plants failed to succeed because the plants exhibited abnormal morphology and infertility. In the present work, we describe the generation of fertile transgenic tobacco plants able to express a synthetic version of human EPO. A 582-bp fragment of the human EPO gene was synthesized using a PCR-based method and ligated into pCR-Blunt. After sequencing, the human EPO fragment was transferred to pWUbi.tm1 and the expression cassette was then transferred to the binary vector pWBVec4a. After Agrobacterium-mediated transformation of Nicotiana tabacum SR1 plants, integration of the transgene into T(0) and T(1) plant genomes was confirmed by PCR. The human EPO gene was found to be expressed in tobacco leaves at the mRNA and protein levels. Self-crossing allowed us to obtain T(1) plants exhibiting Mendelian segregation of the transgene. None of the plants presented any kind of malformation or deformity.


Assuntos
Agrobacterium tumefaciens/genética , Eritropoetina , Nicotiana/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes , Agrobacterium tumefaciens/metabolismo , Clonagem Molecular , Eritropoetina/biossíntese , Eritropoetina/genética , Humanos , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Nicotiana/microbiologia , Transformação Genética , Ubiquitina/química , Ubiquitina/genética
15.
Plant Signal Behav ; 6(12): 1908-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22231200

RESUMO

Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ascorbato Peroxidases/genética , Genes Duplicados , Arabidopsis/enzimologia , Sequência Conservada , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Ploidias
17.
Planta ; 224(2): 300-14, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16397796

RESUMO

Aerobic organisms evolved a complex antioxidant system, which protect the cells against oxidative damage caused by partially reduced oxygen intermediates, also known as reactive oxygen species. In plants, ascorbate peroxidases (EC, 1.11.1.11) catalyze the conversion of H(2)O(2) to H(2)O, using ascorbate as the specific electron donor in this enzymatic reaction. Previously, eight APx genes were identified in the rice (Oryza sativa L.) genome through in silico analysis: two cytosolic isoforms, two putative peroxisomal isoforms, and four putative chloroplastic ones. Using gene-specific probes, we confirmed the presence of the eight APx genes in the rice genome by Southern blot hybridization. Transcript accumulation analysis showed specific expression patterns for each member of the APx family according to developmental stage and in response to salt stress, revealing the complexity of the antioxidant system in plants. Finally, the subcellular localization of rice APx isoforms was determined using GFP-fusion proteins in BY-2 tobacco cells. In agreement with the initial prediction, OSAPX3 was localized in the peroxisomes. On the other hand, the OSAPX6-GFP fusion protein was found in mitochondria of the BY-2 cells, in contrast to the chloroplastic location predicted by sequence analysis. Our findings reveal the functional diversity of the rice APx genes and suggest complementation and coordination of the antioxidant defenses in different cellular compartments during development and abiotic stress.


Assuntos
Oryza/enzimologia , Peroxidases/metabolismo , Ascorbato Peroxidases , Northern Blotting , Southern Blotting , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Isoenzimas/metabolismo , Oryza/efeitos dos fármacos , Peroxidases/genética , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais/farmacologia , Plântula/metabolismo , Frações Subcelulares/enzimologia , Nicotiana/citologia
18.
Genet. mol. biol ; 28(3,suppl): 529-538, Nov. 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-440457

RESUMO

Antioxidant metabolism protects cells from oxidative damage caused by reactive oxygen species (ROS). In plants, several enzymes act jointly to maintain redox homeostasis. Moreover, isoform diversity contributes to the fine tuning necessary for plant responses to both exogenous and endogenous signals influencing antioxidant metabolism. This study aimed to provide a comprehensive view of the major classes of antioxidant enzymes in the woody species Eucalyptus grandis. A careful survey of the FORESTs data bank revealed 36 clusters as encoding antioxidant enzymes: six clusters encoding ascorbate peroxidase (APx) isozymes, three catalase (CAT) proteins, three dehydroascorbate reductase (DHAR), two glutathione reductase (GR) isozymes, four monodehydroascorbate reductase (MDHAR), six phospholipid hydroperoxide glutathione peroxidases (PhGPx), and 12 encoding superoxide dismutases (SOD) isozymes. Phylogenetic analysis demonstrated that all clusters (identified herein) grouped with previously characterized antioxidant enzymes, corroborating the analysis performed. With respect to enzymes involved in the ascorbate-glutathione cycle, both cytosolic and chloroplastic isoforms were putatively identified. These sequences were widely distributed among the different ESTs libraries indicating a broad gene expression pattern. Overall, the data indicate the importance of antioxidant metabolism in eucalyptus


Assuntos
Antioxidantes/metabolismo , Eucalyptus/genética , Ascorbato Oxidase , Catalase , Bases de Dados Genéticas , Enzimas/metabolismo , Eucalyptus/metabolismo , Plantas/genética , Plantas/metabolismo
19.
Genet. mol. biol ; 27(1): 118-123, 2004. ilus, graf
Artigo em Inglês | LILACS | ID: lil-357888

RESUMO

The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.


Assuntos
Arabidopsis , Expressão Gênica , Regiões Promotoras Genéticas , Arabidopsis , Plantas Geneticamente Modificadas , Estresse Mecânico
20.
Trends Plant Sci ; 8(2): 58-62, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12597871

RESUMO

A single calcium-dependent cysteine protease (calpain) gene, essential for aleurone cell development, has been identified recently in maize, although this activity had been described previously in Arabidopsis and maize roots associated with anoxia-induced root-tip death. Calpain genes are ubiquitous in animals and there are up to 12 paralogous genes in humans that exhibit molecular diversity outside of their catalytic domain. Calpain orthologous genes have been identified in 11 plant species. Like their animal counterparts, phytocalpains have significant homology within the catalytic domain, but lack the conserved calcium-binding domain IV, and some members have an N-terminal transmembrane receptor-like domain.


Assuntos
Cálcio/metabolismo , Cisteína Endopeptidases/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Animais , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Plantas/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA