Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Schizophr Res ; 267: 141-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547716

RESUMO

Tobacco smoking is highly prevalent in persons with psychosis and is the leading cause of preventable mortality in this population. Less is known about tobacco smoking in persons with first episode psychosis (FEP) and there have been no estimates about the prevalence of nicotine vaping in FEP. This study reports rates of tobacco smoking and nicotine vaping in young people with FEP enrolled in Coordinated Specialty Care programs in Pennsylvania and Maryland. Using data collected from 2021 to 2023, we examined lifetime and recent smoking and vaping and compared smokers and vapers to nonusers on symptoms, functioning, and substance use. The sample included 445 participants aged 13-35 with recent psychosis onset. Assessments were collected by program staff. Overall, 28 % of participants engaged in either smoking or vaping within 30 days of the admission assessment. Smokers and vapers were disproportionately male, cannabis users, and had lower negative symptom severity than non-smokers. Vapers had higher role and social functioning. Both smoking and vaping were related to a longer time from psychosis onset to program enrollment. We compare these findings to previous studies and suggest steps for addressing smoking and vaping in this vulnerable population.


Assuntos
Transtornos Psicóticos , Vaping , Humanos , Masculino , Vaping/epidemiologia , Feminino , Transtornos Psicóticos/epidemiologia , Adulto , Adulto Jovem , Adolescente , Fumar Tabaco/epidemiologia , Pennsylvania/epidemiologia , Maryland/epidemiologia , Prevalência
2.
Mov Disord ; 38(12): 2230-2240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735923

RESUMO

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE: In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Sequências Repetitivas de Aminoácidos , Ataxias Espinocerebelares , Transcrição Gênica , Células-Tronco Pluripotentes Induzidas , Neurônios/patologia , Apoptose/genética , Linhagem Celular , Sequências Repetitivas de Aminoácidos/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Técnicas de Introdução de Genes , Humanos , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , RNA Antissenso/genética
3.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066173

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.

4.
Mov Disord ; 36(11): 2519-2529, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390268

RESUMO

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE: Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS: The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS: expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin ß-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION: These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
RNA , Ataxias Espinocerebelares , Animais , Ataxinas/metabolismo , Encéfalo/patologia , Camundongos , Neurônios/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ataxias Espinocerebelares/patologia
7.
Mol Neuropsychiatry ; 2(3): 133-144, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27867938

RESUMO

Schizophrenia and other major mental illnesses result from a complex interplay of genetic and environmental factors. We previously identified a mutation in NPAS3 that results in a valine to isoleucine (V304I) amino acid substitution segregating with schizophrenia in a small family. The amino acid change occurs in a potentially critical region for protein function. Furthermore, the same amino acid substitution in proteins related to familial Alzheimer's disease and transthyretin amyloidosis has been associated with protein aggregation. In this study, we demonstrate that NPAS3 is prone to aggregation, and that the V304I mutation in NPAS3 increases this propensity in both bacterial and mammalian expression systems. We also show that NPAS3-V304I reduces soluble endogenous NPAS3, and increases insoluble endogenous NPAS3 and leads to alteration of transcriptional activity. These results suggest that protein aggregation, potentially leading to cell dysfunction via a loss of protein function through sequestration, may contribute to the pathogenesis of schizophrenia and other forms of mental illness. Further exploration of the mechanisms leading to abnormal protein quality control could lead to new therapeutic targets.

8.
Schizophr Res ; 172(1-3): 101-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925800

RESUMO

The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia.


Assuntos
Envelhecimento/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Transtornos Psicóticos/metabolismo , Esquizofrenia/metabolismo , Adulto , Antipsicóticos/uso terapêutico , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Dipeptídeos/metabolismo , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Inositol/metabolismo , Masculino , Espectroscopia de Prótons por Ressonância Magnética/instrumentação , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo
9.
Neuron ; 88(4): 667-77, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26590344

RESUMO

Huntington disease (HD) is caused by a CAG ⋅ CTG expansion in the huntingtin (HTT) gene. While most research has focused on the HTT polyGln-expansion protein, we demonstrate that four additional, novel, homopolymeric expansion proteins (polyAla, polySer, polyLeu, and polyCys) accumulate in HD human brains. These sense and antisense repeat-associated non-ATG (RAN) translation proteins accumulate most abundantly in brain regions with neuronal loss, microglial activation and apoptosis, including caudate/putamen, white matter, and, in juvenile-onset cases, also the cerebellum. RAN protein accumulation and aggregation are length dependent, and individual RAN proteins are toxic to neural cells independent of RNA effects. These data suggest RAN proteins contribute to HD and that therapeutic strategies targeting both sense and antisense genes may be required for efficacy in HD patients. This is the first demonstration that RAN proteins are expressed across an expansion located in an open reading frame and suggests RAN translation may also contribute to other polyglutamine diseases.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , RNA Antissenso/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cerebelo/metabolismo , Criança , Feminino , Lobo Frontal/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Biossíntese de Proteínas , RNA Antissenso/metabolismo , Adulto Jovem
10.
Sci Rep ; 5: 12521, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26218986

RESUMO

Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Recent evidence suggests that HD is a consequence of multimodal, non-mutually exclusive mechanisms of pathogenesis that involve both HTT protein- and HTT RNA-triggered mechanisms. Here we provide further evidence for the role of expanded HTT (expHTT) RNA in HD by demonstrating that a fragment of expHTT is cytotoxic in the absence of any translation and that the extent of cytotoxicity is similar to the cytotoxicity of an expHTT protein fragment encoded by a transcript of similar length and with a similar repeat size. In addition, full-length (FL) expHTT is retained in the nucleus. Overexpression of the splicing factor muscleblind-like 1 (MBNL1) increases nuclear retention of expHTT and decreases the expression of expHTT protein in the cytosol. The splicing and nuclear export factor U2AF65 has the opposite effect, decreasing expHTT nuclear retention and increasing expression of expHTT protein. This suggests that MBNL1 and U2AF65 play a role in nuclear export of expHTT RNA.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Códon de Iniciação , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Fator de Processamento U2AF , Expansão das Repetições de Trinucleotídeos
11.
Mov Disord ; 27(11): 1379-86, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22975850

RESUMO

Huntington's disease (HD) is characterized clinically by chorea, motor impairment, psychiatric manifestations, and dementia. Atrophy of the striatum is the neuropathological hallmark of HD, and previous studies have suggested that striatal atrophy correlates more closely with motor impairment than with chorea. Motor impairment, as measured by motor impairment score, correlates with functional disability in HD patients, but chorea does not. In this study, we investigated the relation between neuronal loss and these motor features. We conducted neuropathological and stereologic assessments of neurons in putamen and subthalamic nuclei in HD patients and age-matched controls. In putamen, we estimated the total number and volume of medium spiny neurons labeled with dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32). In subthalamic nuclei, we estimated the total number of neurons on hematoxylin & eosin/luxol fast blue stains. In putamen of HD, immunohistochemistry showed DARPP-32 neuronal atrophy with extensive disruption of neurites and neuropil; stereologic studies found significant decreases in both the number and size of DARPP-32 neurons; we also detected a significant reduction of overall putamen volume in HD patients, compared to controls. In subthalamic nuclei, there was a mild, but significant, neuronal loss in the HD group. The loss of neurons in putamen and subthalamic nuclei as well as putaminal atrophy were significantly correlated with severity of motor impairment, but not with chorea. Our findings suggest that neuronal loss and atrophy in striatum and neuronal loss in subthalamic nuclei contribute specifically to the motor impairment of HD, but not to chorea.


Assuntos
Corpo Estriado/patologia , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Atividade Motora/fisiologia , Neurônios/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Autopsia , Estudos de Casos e Controles , Morte Celular , Tamanho Celular , Avaliação da Deficiência , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/fisiologia , Escalas de Graduação Psiquiátrica , Estatística como Assunto
12.
Mol Brain ; 5: 17, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22613578

RESUMO

BACKGROUND: Huntington's Disease (HD) is a devastating neurodegenerative disorder that clinically manifests as motor dysfunction, cognitive impairment and psychiatric symptoms. There is currently no cure for this progressive and fatal disorder. The causative mutation of this hereditary disease is a trinucleotide repeat expansion (CAG) in the Huntingtin gene that results in an expanded polyglutamine tract. Multiple mechanisms have been proposed to explain the preferential striatal and cortical degeneration that occurs with HD, including non-cell-autonomous contribution from astrocytes. Although numerous cell culture and animal models exist, there is a great need for experimental systems that can more accurately replicate the human disease. Human induced pluripotent stem cells (iPSCs) are a remarkable new tool to study neurological disorders because this cell type can be derived from patients as a renewable, genetically tractable source for unlimited cells that are difficult to acquire, such as neurons and astrocytes. The development of experimental systems based on iPSC technology could aid in the identification of molecular lesions and therapeutic treatments. RESULTS: We derived iPSCs from a father with adult onset HD and 50 CAG repeats (F-HD-iPSC) and his daughter with juvenile HD and 109 CAG repeats (D-HD-iPSC). These disease-specific iPSC lines were characterized by standard assays to assess the quality of iPSC lines and to demonstrate their pluripotency. HD-iPSCs were capable of producing phenotypically normal, functional neurons in vitro and were able to survive and differentiate into neurons in the adult mouse brain in vivo after transplantation. Surprisingly, when HD-iPSCs were directed to differentiate into an astrocytic lineage, we observed the presence of cytoplasmic, electron clear vacuoles in astrocytes from both F-HD-iPSCs and D-HD-iPSCs, which were significantly more pronounced in D-HD-astrocytes. Remarkably, the vacuolation in diseased astrocytes was observed under basal culture conditions without additional stressors and increased over time. Importantly, similar vacuolation phenotype has also been observed in peripheral blood lymphocytes from individuals with HD. Together, these data suggest that vacuolation may be a phenotype associated with HD. CONCLUSIONS: We have generated a unique in vitro system to study HD pathogenesis using patient-specific iPSCs. The astrocytes derived from patient-specific iPSCs exhibit a vacuolation phenotype, a phenomenon previously documented in primary lymphocytes from HD patients. Our studies pave the way for future mechanistic investigations using human iPSCs to model HD and for high-throughput therapeutic screens.


Assuntos
Astrócitos/patologia , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Adulto , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transplante de Células-Tronco , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
13.
Neurobiol Dis ; 46(3): 607-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426390

RESUMO

The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these sets are exceedingly rare and challenging to study. The NBIA disorders are defined by their appearance on brain magnetic resonance imaging, with iron deposition in the basal ganglia. Clinical features vary, but most include a movement disorder. New causative genes are being rapidly identified; however, the mechanisms by which mutations cause iron accumulation and neurodegeneration are not well understood. NA syndromes are also characterized by a progressive movement disorder, accompanied by cognitive and psychiatric features, resulting from mutations in a number of genes whose roles are also basically unknown. An overlapping feature of the two groups, NBIA and NA, is the occurrence of acanthocytes, spiky red cells with a poorly-understood membrane dysfunction. In this review we summarise recent developments in this field, specifically insights into cellular mechanisms and from animal models. Cell membrane research may shed light upon the significance of the erythrocyte abnormality, and upon possible connections between the two sets of disorders. Shared pathophysiologic mechanisms may lead to progress in the understanding of other types of neurodegeneration.


Assuntos
Encéfalo/patologia , Eritrócitos/fisiologia , Ferro/fisiologia , Doenças Neurodegenerativas/patologia , Animais , Autofagia/fisiologia , Química Encefálica/fisiologia , Humanos , Ferro/sangue , Ferro/metabolismo , Neuroacantocitose/patologia , Doenças Neurodegenerativas/sangue
14.
J Biol Chem ; 286(30): 26680-6, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652713

RESUMO

Inositol pyrophosphate diphosphoinositol pentakisphosphate is ubiquitously present in mammalian cells and contains highly energetic pyrophosphate bonds. We have previously reported that inositol hexakisphosphate kinase type 2 (InsP(6)K2), which converts inositol hexakisphosphate to inositol pyrophosphate diphosphoinositol pentakisphosphate, mediates apoptotic cell death via its translocation from the nucleus to the cytoplasm. Here, we report that InsP(6)K2 is localized mainly in the cytoplasm of lymphoblast cells from patients with Huntington disease (HD), whereas this enzyme is localized in the nucleus in control lymphoblast cells. The large number of autophagosomes detected in HD lymphoblast cells is consistent with the down-regulation of Akt in response to InsP(6)K2 activation. Consistent with these observations, the overexpression of InsP(6)Ks leads to the depletion of Akt phosphorylation and the induction of cell death. These results suggest that InsP(6)K2 activation is associated with the pathogenesis of HD.


Assuntos
Apoptose , Núcleo Celular/enzimologia , Doença de Huntington/enzimologia , Linfócitos/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/enzimologia , Citoplasma/ultraestrutura , Ativação Enzimática/genética , Células HEK293 , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Linfócitos/ultraestrutura , Fosforilação/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Ácido Fítico/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Neuron ; 70(3): 427-40, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21555070

RESUMO

Huntington's disease-like-2 (HDL2) is a phenocopy of Huntington's disease caused by CTG/CAG repeat expansion at the Junctophilin-3 (JPH3) locus. The mechanisms underlying HDL2 pathogenesis remain unclear. Here we developed a BAC transgenic mouse model of HDL2 (BAC-HDL2) that exhibits progressive motor deficits, selective neurodegenerative pathology, and ubiquitin-positive nuclear inclusions (NIs). Molecular analyses reveal a promoter at the transgene locus driving the expression of a CAG repeat transcript (HDL2-CAG) from the strand antisense to JPH3, which encodes an expanded polyglutamine (polyQ) protein. Importantly, BAC-HDL2 mice, but not control BAC mice, accumulate polyQ-containing NIs in a pattern strikingly similar to those in the patients. Furthermore, BAC mice with genetic silencing of the expanded CUG transcript still express HDL2-CAG transcript and manifest polyQ pathogenesis. Finally, studies of HDL2 mice and patients revealed CBP sequestration into NIs and evidence for interference of CBP-mediated transcriptional activation. These results suggest overlapping polyQ-mediated pathogenic mechanisms in HD and HDL2.


Assuntos
Doença de Huntington , Proteínas de Membrana/genética , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Peptídeos/toxicidade , Expansão das Repetições de Trinucleotídeos/genética , Fatores Etários , Análise de Variância , Animais , Células Cultivadas , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina/métodos , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Neurônios/metabolismo , Tamanho do Órgão/genética , Peptídeos/genética , Fatores de Tempo , Transfecção , Ubiquitina/metabolismo
16.
Hum Mutat ; 31(10): 1117-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20725928

RESUMO

Spinocerebellar ataxia type 28 is an autosomal dominant form of cerebellar ataxia (ADCA) caused by mutations in AFG3L2, a gene that encodes a subunit of the mitochondrial m-AAA protease. We screened 366 primarily Caucasian ADCA families, negative for the most common triplet expansions, for point mutations in AFG3L2 using DHPLC. Whole-gene deletions were excluded in 300 of the patients, and duplications were excluded in 129 patients. We found six missense mutations in nine unrelated index cases (9/366, 2.6%): c.1961C>T (p.Thr654Ile) in exon 15, c.1996A>G (p.Met666Val), c.1997T>G (p.Met666Arg), c.1997T>C (p.Met666Thr), c.2011G>A (p.Gly671Arg), and c.2012G>A (p.Gly671Glu) in exon 16. All mutated amino acids were located in the C-terminal proteolytic domain. In available cases, we demonstrated the mutations segregated with the disease. Mutated amino acids are highly conserved, and bioinformatic analysis indicates the substitutions are likely deleterious. This investigation demonstrates that SCA28 accounts for ∼3% of ADCA Caucasian cases negative for triplet expansions and, in extenso, to ∼1.5% of all ADCA. We further confirm both the involvement of AFG3L2 gene in SCA28 and the presence of a mutational hotspot in exons 15-16. Screening for SCA28, is warranted in patients who test negative for more common SCAs and present with a slowly progressive cerebellar ataxia accompanied by oculomotor signs.


Assuntos
Proteases Dependentes de ATP/genética , Ataxia Cerebelar/epidemiologia , Mutação de Sentido Incorreto , Proteases Dependentes de ATP/química , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Idoso , Ataxia Cerebelar/etnologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Criança , Pré-Escolar , Biologia Computacional , Europa (Continente)/epidemiologia , Feminino , Genes Dominantes , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Prevalência , Ataxias Espinocerebelares/congênito , Degenerações Espinocerebelares/epidemiologia , Degenerações Espinocerebelares/etnologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , População Branca , Adulto Jovem
18.
J Neuropathol Exp Neurol ; 67(4): 366-74, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18379432

RESUMO

Huntington disease-like 2 (HDL2) is an autosomal dominant disorder characterized by adult-onset, progressive motor abnormalities, psychiatric disturbances, and dementia ending in premature death. Clinically, it most closely resembles Huntington disease (HD), although a subset of affected individuals have parkinsonian features. Here, we systematically compare 5 HDL2 and 5 HD brains with the hypothesis that, reflecting the clinical presentation, the neuropathology of the 2 diseases would be similar. Gross and microscopic examination revealed prominent striatal neuron loss and astrocytic gliosis in a dorsal to ventral gradient in each disorder and cortical atrophy. Nuclear protein aggregates were as common in HDL2 as in HD, and the ultrastructural features of HDL2 and HD aggregates were similar. Electron microscopy also revealed degenerating neurons, some with evidence of autophagy, in both HDL2 and HD. Small ribonuclear foci, previously associated with potentially neurotoxic RNA transcripts in HDL2, rarely colocalized with protein aggregates in HDL2 brain, although the protein aggregates were stained by anti-TATA-box binding protein antibodies. Overall, the neuropathologic features of HDL2 and HD are very similar but not identical, suggesting that the pathogenetic mechanisms of the 2 diseases may partially overlap.


Assuntos
Doença de Huntington/classificação , Doença de Huntington/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Mudanças Depois da Morte , RNA Longo não Codificante , RNA não Traduzido , Proteína de Ligação a TATA-Box/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina/metabolismo
19.
J Neurosci ; 25(23): 5544-52, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15944382

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. Previous reports have shown that alpha-synuclein deposited in brain tissue from individuals with synucleinopathy is extensively phosphorylated at Ser-129. Here, we investigate the role of phosphorylation of alpha-synuclein in the formation of inclusions involving synphilin-1 and parkin using site-directed mutagenesis to change Ser-129 of alpha-synuclein to alanine (S129A) to abolish phosphorylation at this site. Coexpression of wild-type alpha-synuclein and synphilin-1 in human neuroblastoma SH-SY5Y cells yielded cytoplasmic eosinophilic inclusions with some features resembling Lewy bodies, whereas coexpression of S129A alpha-synuclein and synphlin-1 formed few or no inclusions. Moreover, coexpression of parkin with alpha-synuclein and synphilin-1 formed more ubiquitinated inclusions, but these inclusions decreased with expression of S129A alpha-synuclein instead of wild-type alpha-synuclein. Coimmunoprecipitation assays revealed a decreased interaction of S129A alpha-synuclein with synphilin-1 compared with wild-type alpha-synuclein. Expression of S129A alpha-synuclein instead of wild-type alpha-synuclein also decreased the association of synphilin-1 and parkin and subsequently reduced the parkin-mediated ubiquitination of synphilin-1 and the formation of ubiquitinated inclusions. Treatment of SH-SY5Y cells with H(2)O(2) increased alpha-synuclein phosphorylation and enhanced the formation of inclusions formed by coexpression of alpha-synuclein, synphilin-1, and parkin, whereas treatment with the casein kinase 2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole had the opposite affect. These results indicate that phosphorylation of alpha-synuclein at S129 may be important for the formation of inclusions in PD and related alpha synucleinopathies.


Assuntos
Citoplasma/ultraestrutura , Corpos de Lewy/ultraestrutura , alfa-Sinucleína/metabolismo , Proteínas de Transporte/metabolismo , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Citoplasma/metabolismo , Diclororribofuranosilbenzimidazol/farmacologia , Amarelo de Eosina-(YS) , Humanos , Peróxido de Hidrogênio/farmacologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Fosforilação , Coloração e Rotulagem , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/genética
20.
Mov Disord ; 19(6): 641-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15197701

RESUMO

The most common form of autosomal dominant hereditary spastic paraparesis (HSP), SPG4, is caused by mutations in the spastin gene on chromosome 2p. This disease is characterized by intra- and interfamilial phenotypic variation. To determine the predictive values of clinical signs and symptoms in SPG4, we examined 43 members of a large pedigree with autosomal dominant HSP. We then identified the genetic etiology of the disorder in this family, a novel nonsense mutation in exon 1 of spastin, carried by 24 of the examined family members. The best clinical predictors of positive gene status were the presence of hyperreflexia in the lower extremities, >2 beats of ankle clonus, pes cavus, bladder symptoms and increased tone in the legs. The mean age of onset was 32.2 +/- 7.4 years, but the age of onset was earlier in children from 10 of 12 child-parent gene-positive pairs, with a mean difference of 10.8 +/- 3.3 years. The finding of leg weakness was especially common in older-onset affected family member with leg hyperreflexia. These results suggest that specific clinical signs and symptoms may be of value in differentiating individuals affected with SPG4 from family members with nonspecific neurological findings.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ligação ao Cálcio/genética , Paraparesia Espástica/genética , Paraparesia Espástica/fisiopatologia , Mutação Puntual/genética , Adulto , Expansão das Repetições de DNA/genética , Feminino , Ligação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Espastina , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA