Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(6): 106920, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37283808

RESUMO

T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here, we show that in an inflammation model mimicking bacterial infection using lipopolysaccharide, the expression of many Tas2rs was significantly upregulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly celltype specific and lipopolysaccharide increased the accessibility of many Tas2rs. scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-lasting effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.

2.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798225

RESUMO

T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here we show that, in an inflammation model mimicking bacterial infection, the expression of many Tas2rs are significantly up-regulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly cell type specific and inflammation increased the accessibility of many Tas2rs . scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-term effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.

3.
PLoS Biol ; 21(1): e3001647, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634039

RESUMO

The oral microbiome is second only to its intestinal counterpart in diversity and abundance, but its effects on taste cells remains largely unexplored. Using single-cell RNASeq, we found that mouse taste cells, in particular, sweet and umami receptor cells that express taste 1 receptor member 3 (Tas1r3), have a gene expression signature reminiscent of Microfold (M) cells, a central player in immune surveillance in the mucosa-associated lymphoid tissue (MALT) such as those in the Peyer's patch and tonsils. Administration of tumor necrosis factor ligand superfamily member 11 (TNFSF11; also known as RANKL), a growth factor required for differentiation of M cells, dramatically increased M cell proliferation and marker gene expression in the taste papillae and in cultured taste organoids from wild-type (WT) mice. Taste papillae and organoids from knockout mice lacking Spib (SpibKO), a RANKL-regulated transcription factor required for M cell development and regeneration on the other hand, failed to respond to RANKL. Taste papillae from SpibKO mice also showed reduced expression of NF-κB signaling pathway components and proinflammatory cytokines and attracted fewer immune cells. However, lipopolysaccharide-induced expression of cytokines was strongly up-regulated in SpibKO mice compared to their WT counterparts. Like M cells, taste cells from WT but not SpibKO mice readily took up fluorescently labeled microbeads, a proxy for microbial transcytosis. The proportion of taste cell subtypes are unaltered in SpibKO mice; however, they displayed increased attraction to sweet and umami taste stimuli. We propose that taste cells are involved in immune surveillance and may tune their taste responses to microbial signaling and infection.


Assuntos
Papilas Gustativas , Paladar , Animais , Camundongos , Intestinos , Mucosa , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484118

RESUMO

Taste perception, initiated by activation of taste receptors in taste bud cells, is crucial for regulating nutrient intake. Genetic polymorphisms in taste receptor genes cannot fully explain the wide individual variations of taste sensitivity. Alternative splicing (AS) is a ubiquitous posttranscriptional mode of gene regulation that enriches the functional diversity of proteins. Here, we report the identification of a novel splicing variant of sweet taste receptor gene Tas1r2 (Tas1r2_∆e4) in mouse taste buds and the mechanism by which it diminishes sweet taste responses in vitro and in vivo. Skipping of Tas1r2 exon 4 in Tas1r2_∆e4 led to loss of amino acids in the extracellular Venus flytrap domain, and the truncated isoform reduced the response of sweet taste receptors (STRs) to all sweet compounds tested by generating nonfunctional T1R2/T1R3 STR heterodimers. The splicing factor PTBP1 (polypyrimidine tract-binding protein 1) promoted Tas1r2_∆e4 generation through binding to a polypyrimidine-rich splicing silencer in Tas1r2 exon 4, thus decreasing STR function and sweet taste perception in mice. Taken together, these data reveal the existence of a regulated AS event in Tas1r2 expression and its effect on sweet taste perception, providing a novel mechanism for modulating taste sensitivity at the posttranscriptional level.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Percepção Gustatória , Camundongos , Animais , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética
5.
J Oral Biosci ; 64(1): 155-158, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979250

RESUMO

Taste-signaling proteins, which are expressed throughout the digestive tract, are involved in regulating metabolism and immunity. This study aimed to determine if these genes are expressed and altered in jejunal tissues from patients with extreme obesity who received bariatric surgery. Reverse transcription polymerase chain reaction revealed that phospholipase C beta 2 and transient receptor potential channel M5 expression was downregulated in the jejunum of patients with a body mass index above 50, whereas gustducin expression remained unchanged. Our data suggest that taste-signaling dysregulation might contribute to obesity.


Assuntos
Canais de Cátion TRPM , Papilas Gustativas , Humanos , Jejuno/cirurgia , Obesidade/genética , Canais de Cátion TRPM/metabolismo , Paladar/genética , Papilas Gustativas/metabolismo
6.
Dev Biol ; 477: 232-240, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097879

RESUMO

In mammals, multiple cell-signaling pathways and transcription factors regulate development of the embryonic taste system and turnover of taste cells in the adult stage. Using single-cell RNA-Seq of mouse taste cells, we found that the homeobox-containing transcription factor Nkx2-2, a target of the Sonic Hedgehog pathway and a key regulator of the development and regeneration of multiple cell types in the body, is highly expressed in type III taste cells but not in type II or taste stem cells. Using in situ hybridization and immunostaining, we confirmed that Nkx2-2 is expressed specifically in type III taste cells in the endoderm-derived circumvallate and foliate taste papillae but not in the ectoderm-derived fungiform papillae. Lineage tracing revealed that Nkx2-2-expressing cells differentiate into type III, but not type II or type I cells in circumvallate and foliate papillae. Neonatal Nkx2-2-knockout mice did not express key type III taste cell marker genes, while the expression of type II and type I taste cell marker genes were unaffected in these mice. Our findings indicate that Nkx2-2-expressing cells are committed to the type III lineage and that Nkx2-2 may be critical for the development of type III taste cells in the posterior tongue, thus illustrating a key difference in the mechanism of type III cell lineage specification between ectoderm- and endoderm-derived taste fields.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Homeodomínio/fisiologia , Papilas Gustativas/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/fisiologia , Contagem de Células , Linhagem da Célula/genética , Feminino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/biossíntese , Masculino , Camundongos , RNA-Seq , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Proteínas de Peixe-Zebra/biossíntese
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443181

RESUMO

Taste bud cells regenerate throughout life. Taste bud maintenance depends on continuous replacement of senescent taste cells with new ones generated by adult taste stem cells. More than a century ago it was shown that taste buds degenerate after their innervating nerves are transected and that they are not restored until after reinnervation by distant gustatory ganglion neurons. Thus, neuronal input, likely via neuron-supplied factors, is required for generation of differentiated taste cells and taste bud maintenance. However, the identity of such a neuron-supplied niche factor(s) remains unclear. Here, by mining a published RNA-sequencing dataset of geniculate ganglion neurons and by in situ hybridization, we demonstrate that R-spondin-2, the ligand of Lgr5 and its homologs Lgr4/6 and stem-cell-expressed E3 ligases Rnf43/Znrf3, is expressed in nodose-petrosal and geniculate ganglion neurons. Using the glossopharyngeal nerve transection model, we show that systemic delivery of R-spondin via adenovirus can promote generation of differentiated taste cells despite denervation. Thus, exogenous R-spondin can substitute for neuronal input for taste bud cell replenishment and taste bud maintenance. Using taste organoid cultures, we show that R-spondin is required for generation of differentiated taste cells and that, in the absence of R-spondin in culture medium, taste bud cells are not generated ex vivo. Thus, we propose that R-spondin-2 may be the long-sought neuronal factor that acts on taste stem cells for maintaining taste tissue homeostasis.


Assuntos
Regeneração , Papilas Gustativas/fisiologia , Trombospondinas/metabolismo , Animais , Diferenciação Celular , Camundongos , Organoides , Papilas Gustativas/citologia
8.
Cell Mol Gastroenterol Hepatol ; 11(2): 349-369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32882403

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression. METHODS: Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks. RESULTS: Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls. CONCLUSIONS: Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Camundongos , Camundongos Knockout , Células Supressoras Mieloides , Organoides , Ductos Pancreáticos/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/imunologia
9.
Chem Senses ; 45(3): 187-194, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31993633

RESUMO

Inflammatory cytokines are signaling molecules that regulate numerous physiological processes, from tissue homeostasis to metabolism and food intake. Expression of certain cytokines can be markedly induced in subsets of taste bud cells under acute and chronic inflammation. This may contribute to altered taste perception and preference associated with many diseases. Although the pathways of cytokine induction are well studied in immune cells, they remain poorly characterized in taste cells, in part due to the difficulties of performing biochemical analyses with a limited number of taste cells. The recently developed taste organoid model provides an opportunity to carry out these mechanistic studies in vitro. However, it was unknown whether taste organoids respond to inflammatory stimuli as do in vivo native taste buds. Here we analyze lipopolysaccharide (LPS)-induced expression and secretion of two inflammatory cytokines, tumor necrosis factor (TNF), and interleukin-6 (IL-6). We show that, similarly to native mouse taste epithelia, organoids derived from mouse circumvallate stem cells express several toll-like receptors (TLRs), including TLR4-the primary receptor for LPS. Organoids and native taste epithelia express all five genes in the nuclear factor-κb (Nfkb) family that encode the transcription factor NF-κB, a critical regulator of inflammatory responses. LPS stimulates fast induction of TNF and IL-6 with similar induction kinetics in organoids and native taste epithelia. These results show that taste epithelial cells possess necessary components for inflammatory cytokine induction and secretion and suggest that the organoid model can be a useful tool to dissect the underlying mechanisms.


Assuntos
Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Organoides/efeitos dos fármacos , Paladar/efeitos dos fármacos , Fatores de Necrose Tumoral/biossíntese , Animais , Células Cultivadas , Feminino , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(21): 5552-5557, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735652

RESUMO

The hallmark features of type 2 mucosal immunity include intestinal tuft and goblet cell expansion initiated by tuft cell activation. How infectious agents that induce type 2 mucosal immunity are detected by tuft cells is unknown. Published microarray analysis suggested that succinate receptor 1 (Sucnr1) is specifically expressed in tuft cells. Thus, we hypothesized that the succinate-Sucnr1 axis may be utilized by tuft cells to detect certain infectious agents. Here we confirmed that Sucnr1 is specifically expressed in intestinal tuft cells but not in other types of intestinal epithelial cells, and demonstrated that dietary succinate induces tuft and goblet cell hyperplasia via Sucnr1 and the tuft cell-expressed chemosensory signaling elements gustducin and Trpm5. Conventional mice with a genetic Sucnr1 deficiency (Sucnr1-/-) showed diminished immune responses to treatment with polyethylene glycol and streptomycin, which are known to enhance microbiota-derived succinate, but responded normally to inoculation with the parasitic worm Nippostrongylus brasiliensis that also produces succinate. Thus, Sucnr1 is required for microbiota-induced but not for a generalized worm-induced type 2 immunity.


Assuntos
Células Epiteliais/imunologia , Células Caliciformes/imunologia , Imunidade nas Mucosas/imunologia , Intestino Delgado/imunologia , Nippostrongylus/imunologia , Receptores Acoplados a Proteínas G/fisiologia , Ácido Succínico/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Imunidade nas Mucosas/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Infecções por Strongylida/parasitologia
11.
Brain Behav Immun ; 71: 23-27, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678794

RESUMO

Inflammatory bowel disease (IBD) is a debilitating immune-related condition that affects over 1.4 million Americans. Recent studies indicate that taste receptor signaling is involved in much more than sensing food flavor, and taste receptors have been localized in a variety of extra-oral tissues. One of the newly revealed functions of taste receptors and downstream signaling proteins is modulation of immune responses to microbes and parasites. We previously found that components of the taste receptor signaling pathway are expressed in subsets of the intestinal epithelial cells. α-Gustducin, a key G-protein α subunit involved in sweet, umami, and bitter taste receptor signaling, is expressed in the intestinal mucosa. In this study, we investigated the role of α-gustducin in regulation of gut mucosal immunity and inflammation using α-gustducin knockout mice in the dextran sulfate sodium (DSS)-induced IBD model. DSS is a chemical colitogen that can cause intestinal epithelial damage and inflammation. We analyzed DSS-induced colitis in α-gustducin knockout versus wild-type control mice after administration of DSS in drinking water. Our results show that the knockout mice had aggravated weight loss, diarrhea, intestinal bleeding, and inflammation over the experimental period compared to wild-type mice, concurrent with augmented immune cell infiltration and increased expression of TNF and IFN-γ but decreased expression of IL-13 and IL-5 in the colon. These results suggest that the taste receptor signaling pathway may play critical roles in regulating gut immune balance and inflammation.


Assuntos
Mucosa Intestinal/metabolismo , Transducina/metabolismo , Transducina/fisiologia , Animais , Colite/fisiopatologia , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/fisiopatologia , Interferon gama/metabolismo , Mucosa Intestinal/imunologia , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Paladar/fisiologia , Papilas Gustativas/metabolismo , Transducina/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
PLoS Genet ; 14(2): e1007058, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415007

RESUMO

Mouse taste receptor cells survive from 3-24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/metabolismo , Proteína Gli3 com Dedos de Zinco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Papilas Gustativas/citologia , Língua/citologia , Língua/metabolismo
13.
Sci Rep ; 7(1): 7595, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790351

RESUMO

Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.


Assuntos
Regulação da Expressão Gênica , Papilas Gustativas/metabolismo , Paladar/fisiologia , Transcriptoma , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antígeno CD56/genética , Antígeno CD56/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Transmissão Sináptica/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Papilas Gustativas/citologia , Sequenciamento do Exoma
14.
FASEB J ; 29(6): 2268-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25678625

RESUMO

Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais , Papilas Gustativas/metabolismo , Paladar , Amilorida/farmacologia , Animais , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/fisiologia , Ensaio de Imunoadsorção Enzimática , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Ácido Clorídrico/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Neurônios/fisiologia , Peptídeos/farmacologia , Quinina/farmacologia , Receptores de Glucagon/deficiência , Receptores de Glucagon/genética , Sacarina/farmacologia , Cloreto de Sódio/farmacologia , Sacarose/farmacologia , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Peçonhas/farmacologia
15.
Mol Metab ; 3(2): 191-201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24634822

RESUMO

Glucagon-like peptide-1 (GLP-1) secretion is greatly enhanced after Roux-en-Y gastric bypass (RYGB). While intact GLP-1exerts its metabolic effects via the classical GLP-1 receptor (GLP-1R), proteolytic processing of circulating GLP-1 yields metabolites such as GLP-1(9-36)amide/GLP-1(28-36)amide, that exert similar effects independent of the classical GLP-1R. We investigated the hypothesis that GLP-1, acting via these metabolites or through its known receptor, is required for the beneficial effects of RYGB using two models of functional GLP-1 deficiency - α-gustducin-deficient (α-Gust (-/-)) mice, which exhibit attenuated nutrient-stimulated GLP-1 secretion, and GLP-1R-deficient mice. We show that the effect of RYGB to enhance glucose-stimulated GLP-1 secretion was greatly attenuated in α-Gust (-/-) mice. In both genetic models, RYGB reduced body weight and improved glucose homeostasis to levels observed in lean control mice. Therefore, GLP-1, acting through its classical GLP-1R or its bioactive metabolites, does not seem to be involved in the effects of RYGB on body weight and glucose homeostasis.

16.
J Clin Invest ; 124(3): 1393-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531552

RESUMO

Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.


Assuntos
Imunidade Inata , Mucosa Nasal/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Sinalização do Cálcio , Células Cultivadas , Cílios/fisiologia , Células Epiteliais/fisiologia , Glucose/metabolismo , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pseudomonas aeruginosa/imunologia , Compostos de Amônio Quaternário/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Rinite/imunologia , Rinite/metabolismo , Sinusite/imunologia , Sinusite/metabolismo , Técnicas de Cultura de Tecidos
17.
Am J Physiol Endocrinol Metab ; 304(6): E651-60, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23341498

RESUMO

Sweet taste receptor subunits and α-gustducin found in enteroendocrine cells of the small intestine have been implicated in release of the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) in response to glucose and noncaloric sweeteners. α-Gustducin has also been found in colon, although its function there is unclear. We examined expression of α-gustducin, GLP-1, and GIP throughout the intestine. The number of α-gustducin-expressing cells and those coexpressing α-gustducin together with GLP-1 and/or GIP increased from small intestine to colon. α-Gustducin also was coexpressed with fatty acid G protein-coupled receptor (GPR) 40, GPR41, GPR43, GPR119, GPR120, and bile acid G protein-coupled receptor TGR5 in enteroendocrine cells of the colon. In colon, GPR43 was coexpressed with GPR119 and GPR120, but not with TGR5. Treatment of colonic mucosa isolated from wild-type mice with acetate, butyrate, oleic acid, oleoylethanolamide, or lithocholic acid stimulated GLP-1 secretion. However, GLP-1 release in response to these fatty acids was impaired in colonic tissue from α-gustducin knockout mice.


Assuntos
Colo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Hibridização In Situ , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
18.
J Neurophysiol ; 104(2): 896-901, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519578

RESUMO

Only some taste cells fire action potentials in response to sapid stimuli. Type II taste cells express many taste transduction molecules but lack well-elaborated synapses, bringing into question the functional significance of action potentials in these cells. We examined the dependence of adenosine triphosphate (ATP) transmitter release from taste cells on action potentials. To identify type II taste cells we used mice expressing a green fluorescence protein (GFP) transgene from the alpha-gustducin promoter. Action potentials were recorded by an electrode basolaterally attached to a single GFP-positive taste cell. We monitored ATP release from gustducin-expressing taste cells by collecting the electrode solution immediately after tastant-stimulated action potentials and using a luciferase assay to quantify ATP. Stimulation of gustducin-expressing taste cells with saccharin, quinine, or glutamate on the apical membrane increased ATP levels in the electrode solution; the amount of ATP depended on the firing rate. Increased spontaneous firing rates also induced ATP release from gustducin-expressing taste cells. ATP release from gustducin-expressing taste cells was depressed by tetrodotoxin and inhibited below the detection limit by carbenoxolone. Our data support the hypothesis that action potentials in taste cells responsive to sweet, bitter, or umami tastants enhance ATP release through pannexin 1, not connexin-based hemichannels.


Assuntos
Trifosfato de Adenosina/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Paladar/fisiologia , Transducina/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Benzamidinas/farmacologia , Carbenoxolona/farmacologia , Relação Dose-Resposta a Droga , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Quinina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Glutamato de Sódio/farmacologia , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos , Tetrodotoxina/farmacologia , Transducina/genética
19.
Chem Senses ; 34(8): 685-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19736224

RESUMO

Prior work has shown that sweet taste-deficient T1R3 knockout (KO) mice developed significant sucrose preferences when given long-term sugar versus water tests. The current study investigated the role of olfaction in this experience-conditioned sucrose preference. T1R3 KO and C57BL/6 wild-type (WT) mice were given 24-h sugar versus water tests with ascending concentrations of sucrose (0.5-32%), after which the mice received olfactory bulbectomy (OBx) or sham surgery. When retested with sucrose, the Sham-KO mice preferred all sugar solutions to water, although their intake and preference were less than those of the Sham-WT mice. The OBx-KO mice, in contrast, showed no or weak preferences for dilute sucrose solutions (0.5-8%) although they strongly preferred concentrated sugar solutions (16-32%). OBx-WT mice displayed only a partial reduction in their sucrose preference. Although the OBx mice of both genotypes underconsumed dilute sucrose solutions relative to Sham mice, they overconsumed concentrated sucrose. These results indicate that olfaction plays a critical role in the conditioned preference of T1R3 KO mice for dilute sugar solutions. Further, the fact that OBx-KO mice preferred concentrated sucrose solutions in the absence of normal sweet taste and olfactory sensations underscores the potency of postoral nutritive signals in promoting ingestion.


Assuntos
Condicionamento Operante , Preferências Alimentares/fisiologia , Receptores Acoplados a Proteínas G/genética , Olfato , Sacarose , Edulcorantes , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sacarose/metabolismo , Edulcorantes/metabolismo
20.
Am J Clin Nutr ; 90(3): 822S-825S, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19571229

RESUMO

Many of the receptors and downstream signaling elements involved in taste detection and transduction are also expressed in enteroendocrine cells where they underlie the chemosensory functions of the gut. In one well-known example of gastrointestinal chemosensation (the "incretin effect"), it is known that glucose that is given orally, but not systemically, induces secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide (the incretin hormones), which in turn regulate appetite, insulin secretion, and gut motility. Duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Knockout mice that lack gustducin or the sweet taste receptor subunit T1r3 have deficiencies in secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide and in the regulation of plasma concentrations of insulin and glucose in response to orally ingested carbohydrate-ie, their incretin effect is dysfunctional. Isolated small intestine and intestinal villi from gustducin null mice displayed markedly defective glucagon-like peptide 1 secretion in response to glucose, indicating that this is a local circuit of sugar detection by intestinal cells followed by hormone secretion from these same cells. Modulating hormone secretion from gut "taste cells" may provide novel treatments for obesity, diabetes, and malabsorption syndromes.


Assuntos
Carboidratos da Dieta/metabolismo , Duodeno/efeitos dos fármacos , Células Enteroendócrinas/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Superfície Celular/metabolismo , Paladar/fisiologia , Animais , Glicemia/metabolismo , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Secreção de Insulina , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transducina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA