Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124772, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003826

RESUMO

The main proteases Mpro are a group of highly conserved cysteine hydrolases in ß-coronaviruses. They have been demonstrated to play an unavoidable role in viral replication, and consequently they have been suggested as key targets for treating coronavirus-caused infectious diseases, mainly from the COVID-19 epidemic. Since the most functional form for Mpro enzymatic activity is associated to its homodimer, compounds inhibiting dimerization should also inhibit catalytic activity. We show how PIR-SEIRA (Plasmonic Internal Reflection-Surface Enhanced InfraRed Absorption) spectroscopy can be a noteworthy technique to study proteins subtle structural variations associated to inhibitor binding. Nanoantennas arrays can selectively confine and enhance electromagnetic field via localized plasmonic resonances, thus promoting ultrasensitive detection of biomolecules in close proximity of nanoantenna arrays and enabling the effective investigation of protein monolayers. By adopting this approach, reflection measurements conducted under back illumination of nanoantennas allow to probe anchored protein monolayers, with minimum contribution of environmental buffer molecules. PIR-SEIRA spectroscopy on Mpro was carried out by ad hoc designed devices, resonating in the spectral region of Amide I and Amide II bands. We evaluated here the structure of anchored monomers and dimers in different buffered environment and in presence of a newly designed Mpro inhibitor. Experimental results show that dimerization is not associated to relevant backbone rearrangements of the protein at secondary structure level, and even if the compound inhibits the dimerization, it is not effective at breaking preformed dimers.


Assuntos
Proteases 3C de Coronavírus , SARS-CoV-2 , Espectrofotometria Infravermelho , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Multimerização Proteica/efeitos dos fármacos , Raios Infravermelhos , Humanos , COVID-19/virologia , Betacoronavirus/enzimologia , Betacoronavirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Conformação Proteica
2.
Analyst ; 148(18): 4365-4372, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548234

RESUMO

Raman MicroSpectroscopy (RMS) is a powerful label-free tool to probe the effects of drugs at a cellular/subcellular level. It is important, however, to be able to extract relevant biochemical and kinetic spectroscopic signatures of the specific cellular responses. In the present study, a combination of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) is used to analyse the RMS data for the example of exposure of primary Oral Squamous Carcinoma Cells (OSCC) to the chemotherapeutic agent cisplatin. Dosing regimens were established by cytotoxicity assays, and the effects of the drug on cellular spectral profiles were monitored from 16 to 72 hours post-exposure using an apoptosis assay, to establish the relative populations of viable (V), early (EA) and late apoptotic/dead (LA/D) cells after the drug treatment. Based on a kinetic model of the progression from V > EA > D, MCR-ALS regression analysis of the RMS responses was able to extract spectral profiles associated with each stage of the cellular responses, enabling a quantitative comparison of the response rates for the respective drug treatments. Moreover, PCA was used to compare the spectral profiles of the viable cells exposed to the drug. Spectral differences were highlighted in the early stages (16 hours exposure), indicative of the initial cellular response to the drug treatment, and also in the late stages (48-72 hours exposure), representing the cell death pathway. The study demonstrates that RMS coupled with multivariate analysis can be used to quantitatively monitor the progression of cellular responses to different drugs, towards future applications for label-free, in vitro, pre-clinical screening.


Assuntos
Carcinoma de Células Escamosas , Cisplatino , Humanos , Cisplatino/farmacologia , Análise dos Mínimos Quadrados , Análise Espectral Raman/métodos , Carcinoma de Células Escamosas/tratamento farmacológico , Análise Multivariada
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047038

RESUMO

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
4.
Biomedicines ; 10(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625944

RESUMO

Pancreatic cancer has a high morbidity and mortality with the majority being PC ductal adenocarcinomas (PDAC). Whole genome sequencing provides a wide description of genomic events involved in pancreatic carcinogenesis and identifies putative biomarkers for new therapeutic approaches. However, currently, there are no approved treatments targeting driver mutations in PDAC that could produce clinical benefit for PDAC patients. A proportion of 5-10% of PDAC have a hereditary origin involving germline variants of homologous recombination genes, such as Mismatch Repair (MMR), STK11 and CDKN2A genes. Very recently, BRCA genes have been demonstrated as a useful biomarker for PARP-inhibitor (PARPi) treatments. In this study, a series of 21 FFPE PDACs were analyzed using OncoPan®, a strategic next-generation sequencing (NGS) panel of 37 genes, useful for identification of therapeutic targets and inherited cancer syndromes. Interestingly, this approach, successful also on minute pancreatic specimens, identified biomarkers for personalized therapy in five PDAC patients, including two cases with HER2 amplification and three cases with mutations in HR genes (BRCA1, BRCA2 and FANCM) and potentially eligible to PARPi therapy. Molecular analysis on normal tissue identified one PDAC patient as a carrier of a germline BRCA1 pathogenetic variant and, noteworthy, this patient was a member of a family affected by inherited breast and ovarian cancer conditions. This study demonstrates that the OncoPan® NGS-based panel constitutes an efficient methodology for the molecular profiling of PDAC, suitable for identifying molecular markers both for therapy and risk assessment. Our data demonstrate the feasibility and utility of these NGS analysis in the routine setting of PDAC molecular characterization.

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35055245

RESUMO

Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical-chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.

6.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34736221

RESUMO

The use of glyceryl monooleate (GMO)-based nanoparticles has not yet been explored in overcoming the low bioavailability of Epigallocatechin-3-gallate (EGCG), a green tea polyphenol with a known anticancer activity. Since the inclusion of a guest molecule can affect the curvature and the supramolecular structure of fully hydrated GMO-based phase, the phase behavior of bulk and dispersed liquid crystalline systems containing EGCG were explored by Small Angle Neutron Scattering and X-Ray Diffraction experiments. Molecular Dynamic Simulations showed how the interaction of EGCG with polar heads of GMO strongly affects the curvature and packing of GMO phase. The EGCG encapsulation efficiency was determined in the nanodispersions and their size studied by Dynamic Light Scattering and Atomic Force Microscopy. A nanodispersed formulation has been optimized with a cytotoxic effect more than additive of GMO and EGCG.


Assuntos
Catequina , Catequina/análogos & derivados , Glicerídeos , Chá
7.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639901

RESUMO

Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%).

8.
Sci Rep ; 11(1): 9283, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927258

RESUMO

The maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.


Assuntos
Antivirais/química , COVID-19/metabolismo , Proteases 3C de Coronavírus/química , Inibidores de Proteases/química , SARS-CoV-2/fisiologia , Antivirais/farmacologia , COVID-19/terapia , Biologia Computacional , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Dimerização , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Termodinâmica , Difração de Raios X
9.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445433

RESUMO

The object of this study is a comparison between solid lipid nanoparticles and ethosomes for caffeic acid delivery through the skin. Caffeic acid is a potent antioxidant molecule whose cutaneous administration is hampered by its low solubility and scarce stability. In order to improve its therapeutic potential, caffeic acid has been encapsulated within solid lipid nanoparticles and ethosomes. The effect of lipid matrix has been evaluated on the morphology and size distribution of solid lipid nanoparticles and ethosomes loaded with caffeic acid. Particularly, morphology has been investigated by cryogenic transmission electron microscopy and small angle X-ray scattering, while mean diameters have been evaluated by photon correlation spectroscopy. The antioxidant power has been evaluated by the 2,2-diphenyl-1-picrylhydrazyl methodology. The influence of the type of nanoparticulate system on caffeic acid diffusion has been evaluated by Franz cells associated to the nylon membrane, while to evaluate caffeic acid permeation through the skin, an amperometric study has been conducted, which was based on a porcine skin-covered oxygen electrode. This apparatus allows measuring the O2 concentration changes in the membrane induced by polyphenols and H2O2 reaction in the skin. The antioxidative reactions in the skin induced by caffeic acid administered by solid lipid nanoparticles or ethosomes have been evaluated. Franz cell results indicated that caffeic acid diffusion from ethosomes was 18-fold slower with respect to solid lipid nanoparticles. The amperometric method evidenced the transdermal delivery effect of ethosome, indicating an intense antioxidant activity of caffeic acid and a very low response in the case of SLN. Finally, an irritation patch test conducted on 20 human volunteers demonstrated that both ethosomes and solid lipid nanoparticles can be safely applied on the skin.

10.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443503

RESUMO

Caffeic acid is a natural antioxidant, largely distributed in plant tissues and food sources, possessing anti-inflammatory, antimicrobial, and anticarcinogenic properties. The object of this investigation was the development of a formulation for caffeic acid cutaneous administration. To this aim, caffeic acid has been loaded in solid lipid nanoparticles by hot homogenization and ultrasonication, obtaining aqueous dispersions with high drug encapsulation efficiency and 200 nm mean dimension, as assessed by photon correlation spectroscopy. With the aim to improve the consistence of the aqueous nanodispersions, different types of polymers have been considered. Particularly, poloxamer 407 and hyaluronic acid gels containing caffeic acid have been produced and characterized by X-ray and rheological analyses. A Franz cell study enabled to select poloxamer 407, being able to better control caffeic acid diffusion. Thus, a nanoparticulate gel has been produced by addition of poloxamer 407 to nanoparticle dispersions. Notably, caffeic acid diffusion from nanoparticulate gel was eight-fold slower with respect to the aqueous solution. In addition, the spreadability of nanoparticulate gel was suitable for cutaneous administration. Finally, the antioxidant effect of caffeic acid loaded in nanoparticulate gel has been demonstrated by ex-vivo evaluation on human skin explants exposed to cigarette smoke, suggesting a protective role exerted by the nanoparticles.

11.
Beilstein J Nanotechnol ; 10: 1789-1801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501750

RESUMO

This investigation is a study of new lipid nanoparticles for cutaneous antioxidant delivery. Several molecules, such as α-tocopherol and retinoic acid, have been shown to improve skin condition and even counteract the effects of exogenous stress factors such as smoking on skin aging. This work describes the design and development of lipid nanoparticles containing antioxidant agents (α-tocopherol or retinoic acid) to protect human skin against pollutants. Namely, solid lipid nanoparticles and nanostructured lipid carriers were prepared using different lipids (tristearin, compritol, precirol or suppocire) in the presence or absence of caprylic/capric triglycerides. The formulations were characterized by particle size analysis, cryogenic transmission electron microscopy, small-angle X-ray diffraction, encapsulation efficiency, preliminary stability, in vitro cytotoxicity and protection against cigarette smoke. Nanostructured lipid carriers were found to reduce agglomerate formation and provided better dimensional stability, as compared to solid lipid nanoparticles, suggesting their suitability for antioxidant loading. Based on the preformulation study, tristearin-based nanostructured lipid carriers loaded with α-tocopherol were selected for ex vivo studies since they displayed superior physico-chemical properties as compared to the other nanostructured lipid carriers compositions. Human skin explants were treated with α-tocopherol-loaded nanostructured lipid carriers and then exposed to cigarette smoke, and the protein levels of the stress-induced enzyme heme oxygenase were analyzed in skin homogenates. Interestingly, it was found that pretreatment with the nanoformulation resulted in significantly reduced heme oxygenase upregulation as compared to control samples, suggesting a protective effect provided by the nanoparticles.

12.
Tumori ; 105(4): 338-352, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31068090

RESUMO

INTRODUCTION: Recent advances in technology and research are rapidly changing the diagnostic approach to hereditary gastrointestinal cancer (HGIC) syndromes. Although the practice of clinical genetics is currently transitioning from targeted criteria-based testing to multigene panels, important challenges remain to be addressed. The aim of this study was to develop and technically validate the performance of a multigene panel for HGIC. METHODS: CGT-colon-G14 is an amplicon-based panel designed to detect single nucleotide variants and small insertions/deletions in 14 well-established or presumed high-penetrance genes involved in HGIC. The assay parameters tested were sensitivity, specificity, accuracy, and inter-run and intra-run reproducibility. Performance and clinical impact were determined using 48 samples of patients with suspected HGIC/polyposis previously tested with the targeted approach. RESULTS: The CGT-colon-G14 panel showed 99.99% accuracy and 100% inter- and intra-run reproducibility. Moreover, panel testing detected 1 actionable pathogenic variant and 16 variants with uncertain clinical impact that were missed by the conventional approach because they were located in genes not previously analyzed. CONCLUSION: Introduction of the CGT-colon-G14 panel into the clinic could provide a higher diagnostic yield than a step-wise approach; however, results may not always be straightforward without the implementation of new genetic counseling models.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Gastrointestinais/genética , Testes Genéticos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Aconselhamento Genético/métodos , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
13.
Int J Pharm ; 552(1-2): 225-234, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291957

RESUMO

Epigallocatechin-3-gallate (EGCG) is a polyphenolic catechin from green tea, well known for being bioactive in age-associated pathologies where oxidative stress plays a preeminent role. The activity of this molecule is however contrasted by its high chemical and metabolic instability that determines a poor concentration of the antioxidant within the biological system after administration. In order to protect the molecule and increase its delivery efficiency, we have encapsulated EGCG inside anionic liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesteryl hemisuccinate. To maximize EGCG internalization, magnesium salt was added in the preparation. However stable nanodispersions suitable for drug delivery were obtained only after treatment with Poloxamer-407, a polyethylene-propylene glycol copolymer. The structural and morphological properties of the produced dispersion were studied by X-ray diffraction, which showed a multilamellar structure even after EGCG addition and an ordering effect of Poloxamer-407; Dynamic Light Scattering demonstrated serum stability of the liposomes. The characterization was completed by evaluating both encapsulation efficiency (100%, in the final formulation) and in vitro EGCG release. Since oxidative stress is involved in numerous retinal degenerative diseases, such as age-related macular degeneration, the ability of these liposomes to contrast H2O2-induced cell death was assessed in human retinal cells. Morphological changes at the subcellular level were analyzed by Transmission Electron Microscopy, which showed that mitochondria were better preserved in cells treated with liposomes then those treated with free EGCG. In conclusion, the results demonstrated that the produced formulation enhances the efficacy of EGCG under stress conditions, thus representing a potential formulation for the intracellular delivery of EGCG in diseases caused by oxidative damage.


Assuntos
Antioxidantes/administração & dosagem , Catequina/análogos & derivados , Magnésio/administração & dosagem , Nanopartículas/administração & dosagem , Poloxâmero/administração & dosagem , Antioxidantes/química , Catequina/administração & dosagem , Catequina/química , Linhagem Celular , Liberação Controlada de Fármacos , Humanos , Peróxido de Hidrogênio , Lipossomos , Magnésio/química , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Poloxâmero/química
14.
Eur J Pharm Biopharm ; 119: 437-446, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760448

RESUMO

This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids.


Assuntos
Lipídeos/química , Nanopartículas/química , Progesterona/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Triglicerídeos/química , Difração de Raios X/métodos , Raios X
15.
Mater Sci Eng C Mater Biol Appl ; 74: 357-364, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254304

RESUMO

The use of solid lipid nanoparticles (SLN) is a promising route for the delivery of platinum complexes aimed to anticancer activity. This paper describes the production and characterization of SLN suitable for the loading of Pt complexes containing the biocompatible phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) as neutral ligand. After a screening of several lipidic phases, stearic acid-based SLN were identified as the most appropriate for the purpose. They were produced by emulsion-dilution method and then characterized in terms of dimension, polydispersity, time stability, pH balance and morphological aspect. Stearic acid SLN are designed as a system able to coordinate to platinum, acting as anionic carboxylic ligands, replacing the base carbonate of the Pt synthon [PtCO3(DMSO)2], where also DMSO can subsequently be substituted by phosphinic ligands, namely PTA. SLN functionalised with Pt-PTA were produced and characterized by this synthetic route. The toxicity of plain SLN and the antiproliferative effect of SLN functionalised with Pt-PTA were evaluated on two human cancer cell lines K562 and A2780. The results indicate that SLN can be exploited as a delivery system for Pt complexes with potential anticancer activity.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Adamantano/análogos & derivados , Adamantano/química , Antineoplásicos/toxicidade , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/toxicidade , Emulsões/química , Humanos , Células K562 , Espectroscopia de Ressonância Magnética , Compostos Organofosforados/química , Tamanho da Partícula , Platina/química , Ácidos Esteáricos/química
16.
Mater Sci Eng C Mater Biol Appl ; 71: 669-677, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987758

RESUMO

Crocin, a potent antioxidant obtained from saffron, shows anticancer activity in in vivo models. Unfortunately unfavorable physicochemical features compromise its use in topical therapy. The present study describes the preparation and characterization of nanostructured lipid dispersions as drug delivery systems for topical administration of crocin and the evaluation of antioxidant and antiproliferative effects of crocin once encapsulated into nanostructured lipid dispersions. Nanostructured lipid dispersions based on monoolein in mixture with sodium cholate and sodium caseinate have been characterized by cryo-TEM and PCS. Crocin permeation was evaluated in vitro by Franz cells, while the oxygen radical absorbance capacity assay was used to evaluate the antioxidant activity. Furthermore, the antiproliferative activity was tested in vitro by the MTT test using a human melanoma cell line. The emulsification of monoolein with sodium cholate and sodium caseinate led to dispersions of cubosomes, hexasomes, sponge systems and vesicles, depending on the employed emulsifiers. Permeation and shelf life studies demonstrated that nanostructured lipid dispersions enabled to control both rate of crocin diffusion through the skin and crocin degradation. The oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of crocin while the MTT test showed an increase of crocin cytotoxic effect after incorporation in nanostructured lipid dispersions. This work has highlighted that nanostructured lipid dispersions can protect the labile molecule crocin from degradation, control its skin diffusion and prolong antioxidant activity, therefore suggesting the suitability of nanostructured lipid dispersions for crocin topical administration.


Assuntos
Antioxidantes , Carotenoides , Crocus/química , Sistemas de Liberação de Medicamentos/métodos , Melanoma/tratamento farmacológico , Administração Tópica , Antioxidantes/química , Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/farmacologia , Caseínas/química , Caseínas/farmacologia , Linhagem Celular Tumoral , Emulsões , Glicerídeos/química , Glicerídeos/farmacologia , Humanos , Melanoma/metabolismo , Melanoma/patologia , Colato de Sódio/química , Colato de Sódio/farmacologia
17.
Int J Pharm ; 492(1-2): 291-300, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26187165

RESUMO

The aliphatic phosphine PTA (1,3,5-triaza-7-phosphaadamantane) is a promising ligand for metal complexes designed and developed as innovative inorganic drugs. In the present paper, an N-alkylated derivative of PTA, (PTAC16H33)X (X=I, C1, or X=PF6, C2) and its platinum coordination complex cis-[PtCl2(PTAC16H33)2](PF6)2, C3, were considered as components of cationic lipid nanoparticles (CLNs). Particularly, CLN1, CLN2 and CLN3 were obtained by adding derivatives C1, C2 or C3 during nanoparticles preparation, while CLN2-Pt were obtained by treating preformed CLN2 with Pt(II). It was demonstrated that CLN1, CLN2 and CLN3 can be produced with technological conventional methods. However, among the two here proposed protocols, the one based on the treatment of preformed nanoparticles appears more advantageous as compared to the other since it allows a quantitative association yield of Pt. As determined by ICP-OES, a content of P and Pt 2.2-fold and 2.5-fold higher in CLN2-Pt than in CLN3 was evidenced. For the first time was demonstrated that properly functionalized preformed nanoparticles can be efficiently used to obtain a post production Pt(II) complex while maintaining a cytotoxic activity toward cultured cells. In fact, the antiproliferative activity shown by CLN3, CLN2-Pt on the three model cancer cell lines was substantially similar and comparable to that of complex C3 in dmso solution. Thus N-alkylated-PTA derivatives in CLNs could be proposed as innovative biocompatible and water dispersible nanoparticles carrying lipophilic Pt complexes becoming an interesting and improved system with respect to dmso solution.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/química , Complexos de Coordenação/química , Nanopartículas/química , Compostos Organofosforados/química , Platina/química , Adamantano/química , Adamantano/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , DNA/metabolismo , Humanos , Lipídeos/química , Compostos Organofosforados/farmacologia , Platina/farmacologia
18.
J Pharm Sci ; 102(7): 2349-61, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686742

RESUMO

Curcumin (CUR) is a well-known natural compound showing antioxidant, anti-inflammatory, and antitumor abilities but characterized by poor bioavailability and chemical instability, which drastically reduce its application in the treatment of chronic diseases such as osteoarthritis. The aim of the present study is the design and evaluation of monooleine aqueous dispersion (MAD) as novel carriers for the topical administration of CUR. CUR-loaded MAD was formulated using two different emulsifier systems, namely poloxamer 407 (MAD-A) and sodium cholate-sodium caseinate (MAD-B). These vehicles were characterized, and their influence on in vitro percutaneous absorption of CUR was also evaluated. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity, and a Western blot analysis was performed to evaluate the inhibitory effect of the formulations on inducible nitric oxide synthase and cyclooxygenase 2 expressions. From the obtained results, CUR encapsulation efficiency was higher than 98% for MAD-A and 82% for MAD-B. Shelf-life studies showed that MAD-A maintains CUR stability better than MAD-B, and both vehicles demonstrated, in vitro, control of drug diffusion through the skin. Finally, MAD-A and MAD-B were able to extend the antioxidant/anti-inflammatory effects of CUR, also confirming the protective effect toward CUR chemical stability.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Glicerídeos/química , Pele/metabolismo , Administração Tópica , Adulto , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Caseínas/química , Curcumina/farmacocinética , Curcumina/farmacologia , Emulsificantes/química , Humanos , Poloxâmero/química , Absorção Cutânea , Colato de Sódio/química , Água/química
19.
J Pediatr Gastroenterol Nutr ; 47(5): 618-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18979585

RESUMO

OBJECTIVES: Celiac disease (CD)-related lesions have been reported in duodenal bulb biopsies, sometimes the bulb mucosa being the only one affected. The aim was to verify in a significant series whether histological lesions are always present in the bulb of celiac patients, what is the prevalence of lesions when isolated to the bulb, and if similar lesions are present in nonceliac subjects. METHODS: We studied 665 children with CD (241 males, range 9 months-15 years, 8 months), at diagnosis on a gluten-containing diet, and 348 age- and sex-matched gastroenterological controls submitted to upper endoscopy for gastroenterological complaints. During endoscopy, multiple biopsies (1 bulb and 4 distal duodenum samples) were taken. Anti-endomysium antibodies were evaluated by immunofluorescence method, anti-human tissue-transglutaminase antibodies by an enzyme-linked immunosorbent assay or radioimmunoassay. Human leukocyte antigen-DRB1, -DQA1, and -DQB1 genes were typed by polymerase chain reaction sequence-specific primers repeat method. RESULTS: In all of the patients with CD, histological lesions were present in the bulb sample; in 16 of them, the lesions were present only in the bulb. Patchy villous atrophy was found in 20 children. All of the patients with CD were anti-endomysium and/or antitransglutaminase positive. The controls showed neither autoantibody positivity nor mucosal changes compatible with CD. CONCLUSIONS: This study demonstrated that CD-related histological lesions are always present in the bulb; sometimes this specific site is the only one affected. Therefore, we suggest taking 2 biopsies from the bulb and 2 from the distal duodenum for CD diagnosis.


Assuntos
Doença Celíaca/diagnóstico , Doença Celíaca/patologia , Duodeno/patologia , Mucosa Intestinal/patologia , Adolescente , Biópsia , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Criança , Pré-Escolar , Dieta Livre de Glúten , Duodeno/citologia , Feminino , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Lactente , Mucosa Intestinal/citologia , Masculino , Reação em Cadeia da Polimerase , Valores de Referência , Sensibilidade e Especificidade
20.
Pharm Res ; 25(7): 1521-30, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18172580

RESUMO

PURPOSE: The present investigation describes a formulative study for the development of innovative drug delivery systems for bromocriptine. METHODS: Solid lipid nanoparticles (SLN) based on different lipidic components have been produced and characterized. Morphology and dimensional distribution have been investigated by electron microscopy and Photon Correlation Spectroscopy. The antiparkinsonian activities of free bromocriptine and bromocriptine encapsulated in nanostructured lipid carriers were evaluated in 6-hydroxydopamine hemilesioned rats, a model of Parkinson's disease. RESULTS: Tristearin/tricaprin mixture resulted in nanostructured lipid carriers with stable mean diameter up to 6 months from production. Bromocriptine was encapsulated with high entrapment efficiency in all of the SLN samples, particularly in the case of tristearin/tricaprin mixture. Bromocriptine encapsulation did not change nanoparticle dimensions. In vitro release kinetics based on a dialysis method demonstrated that bromocriptine was released in a prolonged fashion for 48 h. Tristearin/tricaprin nanoparticles better controlled bromocriptine release. Both free and encapsulated bromocriptine reduced the time spent on the blocks (i.e. attenuated akinesia) in the bar test, although the action of encapsulated bromocriptine was more rapid in onset and prolonged. CONCLUSIONS: It can be concluded that nanostructured lipid carriers encapsulation may represent an effective strategy to prolong the half-life of bromocriptine.


Assuntos
Antiparkinsonianos/administração & dosagem , Bromocriptina/administração & dosagem , Absorciometria de Fóton , Animais , Antiparkinsonianos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Bromocriptina/uso terapêutico , Cromatografia Líquida de Alta Pressão , Microscopia Crioeletrônica , Diálise , Sistemas de Liberação de Medicamentos , Cinética , Luz , Lipídeos , Masculino , Microscopia Eletrônica , Nanopartículas , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Triglicerídeos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA