Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Assuntos
Pulmão , Transcriptoma , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Recém-Nascido , Lactente , Criança , Pré-Escolar , Masculino , Feminino , Análise de Sequência de RNA/métodos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
2.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084407

RESUMO

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Assuntos
Bronquiolite Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratória/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Células Epiteliais/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489262

RESUMO

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Assuntos
Displasia Broncopulmonar , Pré-Escolar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/patologia , Imuno-Histoquímica , Proteoma , Proteômica , Pulmão/metabolismo
4.
PLoS One ; 18(2): e0281898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827401

RESUMO

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Chlorocebus aethiops , Metanol , Acetona , Análise da Expressão Gênica de Célula Única , Células Epiteliais
5.
J Pediatric Infect Dis Soc ; 11(11): 482-491, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153766

RESUMO

BACKGROUND: Current diagnostic tests for pharyngitis do not distinguish between symptomatic group A Streptococcus (GAS) infection and asymptomatic colonization, resulting in over-diagnosis and unnecessary use of antibiotics. We assessed whether measures of host response could make this distinction. METHODS: We enrolled 18 children with pharyngitis having Centor scores of 4 or 5 and 21 controls without pharyngitis or other acute infections. Both groups had throat cultures, molecular tests for GAS and respiratory viruses and IgM serology for Epstein-Barr virus. Host response was evaluated with white blood cell count (WBC), C-reactive protein (CRP), procalcitonin (PCT), and sequencing of RNA from peripheral blood leukocytes. RESULTS: Of 18 cases, 11 had GAS pharyngitis, 3 had adenovirus pharyngitis and 4 had other pharyngitis. Among asymptomatic controls, 5 were positive for GAS. WBC, CRP, and PCT were higher in subjects with pharyngitis compared to asymptomatic controls including those with GAS. Transcriptional profiles from children with symptomatic GAS were clearly distinct from those of children in all other groups. The levels of two genes, CD177 and TLR5 each individually accurately distinguished between symptomatic and asymptomatic GAS. Optimal diagnostic sensitivity and specificity were achieved by the combination of CRP and PCT, and by each of the two gene markers. CONCLUSION: In this exploratory study, we showed that traditional measures of inflammation and markers of host gene expression distinguish between symptomatic and asymptomatic GAS. These results point to future rapid molecular approaches for improving the diagnosis of GAS pharyngitis, that may help reduce unnecessary antibiotic use.


Assuntos
Infecções por Vírus Epstein-Barr , Faringite , Infecções Estreptocócicas , Criança , Humanos , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Streptococcus pyogenes/genética , Faringite/diagnóstico , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico , Antibacterianos/uso terapêutico , Proteína C-Reativa , Pró-Calcitonina
6.
Hypertension ; 79(1): 79-92, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739767

RESUMO

Clinical trials of Dll4 (Delta-like 4) neutralizing antibodies (Dll4nAbs) in cancer patients are ongoing. Surprisingly, pulmonary hypertension (PH) occurs in 14% to 18% of patients treated with Dll4nAbs, but the mechanisms have not been studied. Here, PH progression was measured in mice treated with Dll4nAbs. We detected Notch signaling in lung tissues and analyzed pulmonary vascular permeability and inflammation. Notch target gene array was performed on adult human pulmonary microvascular endothelial cells (ECs) after inhibiting Notch cleavage. Similar mechanisms were studied in PH mouse models and pulmonary arterial hypertension patients. The rescue effects of constitutively activated Notch1 in vivo were also measured. We observed that Dll4nAbs induced PH in mice as indicated by significantly increased right ventricular systolic pressure, as well as pulmonary vascular and right ventricular remodeling. Mechanistically, Dll4nAbs inhibited Notch1 cleavage and subsequently impaired lung endothelial barrier function and increased immune cell infiltration in vessel walls. In vitro, Notch targeted genes' expression related to cell growth and inflammation was decreased in human pulmonary microvascular ECs after the Notch1 inactivation. In lungs of PH mouse models and pulmonary arterial hypertension patients, Notch1 cleavage was inhibited. Consistently, EC cell-cell junction was leaky, and immune cell infiltration increased in PH mouse models. Overexpression activated Notch1-attenuated progression of PH in mice. In conclusion, Dll4nAbs led to PH development in mice by impaired EC barrier function and increased immune cell infiltration through inhibition of Notch1 cleavage in lung ECs. Reduced Notch1 cleavage in lung ECs could be an underlying mechanism of PH pathogenesis.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Receptor Notch1/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Células Endoteliais/metabolismo , Hipertensão Pulmonar/genética , Masculino , Camundongos , Artéria Pulmonar/metabolismo , Receptor Notch1/genética , Transdução de Sinais/genética
7.
Sci Rep ; 11(1): 19436, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593881

RESUMO

Combustion related particulate matter air pollution (PM) is associated with an increased risk of respiratory infections in adults. The exact mechanism underlying this association has not been determined. We hypothesized that increased concentrations of combustion related PM would result in dysregulation of the innate immune system. This epidemiological study includes 111 adult patients hospitalized with respiratory infections who underwent transcriptional analysis of their peripheral blood. We examined the association between gene expression at the time of hospitalization and ambient measurements of particulate air pollutants in the 28 days prior to hospitalization. For each pollutant and time lag, gene-specific linear models adjusting for infection type were fit using LIMMA (Linear Models For Microarray Data), and pathway/gene set analyses were performed using the CAMERA (Correlation Adjusted Mean Rank) program. Comparing patients with viral and/or bacterial infection, the expression patterns associated with air pollution exposure differed. Adjusting for the type of infection, increased concentrations of Delta-C (a marker of biomass smoke) and other PM were associated with upregulation of iron homeostasis and protein folding. Increased concentrations of black carbon (BC) were associated with upregulation of viral related gene pathways and downregulation of pathways related to antigen presentation. The pollutant/pathway associations differed by lag time and by type of infection. This study suggests that the effect of air pollution on the pathogenesis of respiratory infection may be pollutant, timing, and infection specific.


Assuntos
Material Particulado/efeitos adversos , Infecções Respiratórias/imunologia , Fumaça/efeitos adversos , Transcriptoma , Adulto , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Imunidade/genética , Masculino , New York/epidemiologia , Infecções Respiratórias/etiologia , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Fuligem/efeitos adversos
8.
Am J Pathol ; 190(8): 1763-1773, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32450152

RESUMO

Within the human lung, mast cells typically reside adjacent to the conducting airway and assume a mucosal phenotype (MCT). In rare pathologic conditions, connective tissue phenotype mast cells (MCTCs) can be found in the lung parenchyma. MCTCs accumulate in the lungs of infants with severe bronchopulmonary dysplasia, a chronic lung disease associated with preterm birth, which is characterized by pulmonary vascular dysmorphia. The human mast cell line (LUVA) was used to model MCTCs or MCTs. The ability of MCTCs to affect vascular organization during fetal lung development was tested in mouse lung explant cultures. The effect of MCTCs on in vitro tube formation and barrier function was studied using primary fetal human pulmonary microvascular endothelial cells. The mechanistic role of MCTC proteases was tested using inhibitors. MCTCLUVA but not MCTLUVA was associated with vascular dysmorphia in lung explants. In vitro, the addition of MCTCLUVA potentiated fetal human pulmonary microvascular endothelial cell interactions, inhibited tube stability, and disrupted endothelial cell junctions. Protease inhibitors ameliorated the ability of MCTCLUVA to alter endothelial cell angiogenic activities in vitro and ex vivo. These data indicate that MCTCs may directly contribute to disrupted angiogenesis in bronchopulmonary dysplasia. A better understanding of factors that regulate mast cell subtype and their different effector functions is essential.


Assuntos
Displasia Broncopulmonar/patologia , Células Endoteliais/patologia , Pulmão/patologia , Mastócitos/patologia , Neovascularização Fisiológica/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos
9.
Toxicol Lett ; 325: 25-33, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112875

RESUMO

RATIONALE: Diacetyl (DA; 2,3-butanedione) is a chemical found commonly in foods and e-cigarettes. When inhaled, DA causes epithelial injury, though the mechanism of repair remain poorly understood. The objective of this study was to evaluate airway basal cell repair after DA vapor exposure. METHODS: Primary human bronchial epithelial cells were exposed to DA or PBS for 1 h. Lactate dehydrogenase, cleaved caspase 3/7 and trans-epithelial electrical resistance were measured prior to and following exposure. Exposed cultures were analyzed for the airway basal cell markers keratin 5 and p63 as well as ubiquitin and proteasome activity. Cultures were also treated with a proteasome inhibitor (MG132). RESULTS: DA vapor exposure caused a transient decrease in trans-epithelial electrical resistance in all DA-exposed cultures. Supernatant lactate dehydrogenase and cleaved caspase 3/7 increased significantly at the highest DA concentration but not at lower DA concentrations. Increased keratin 5 ubiquitination occurred after DA exposure but resolved by day 3. Damage to airway basal cells persisted at day 3 in the presence of MG132. CONCLUSIONS: Diacetyl exposure results in airway basal cell injury with keratin 5 ubiquitination and decreased p63 expression. The ubiquitin-proteasome-pathway partially mediates airway basal cell repair after acute DA exposure.


Assuntos
Diacetil/toxicidade , Mucosa Respiratória/patologia , Biomarcadores , Brônquios/citologia , Brônquios/patologia , Caspases/metabolismo , Diacetil/administração & dosagem , Impedância Elétrica , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Exposição por Inalação , Queratina-5/metabolismo , L-Lactato Desidrogenase/metabolismo , Leupeptinas/farmacologia , Proteínas de Membrana , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
10.
Front Immunol ; 11: 563473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552042

RESUMO

Many premature babies who are born with neonatal respiratory distress syndrome (RDS) go on to develop Bronchopulmonary Dysplasia (BPD) and later Post-Prematurity Respiratory Disease (PRD) at one year corrected age, characterized by persistent or recurrent lower respiratory tract symptoms frequently related to inflammation and viral infection. Transcriptomic profiles were generated from sorted peripheral blood CD8+ T cells of preterm and full-term infants enrolled with consent in the NHLBI Prematurity and Respiratory Outcomes Program (PROP) at the University of Rochester and the University at Buffalo. We identified outcome-related gene expression patterns following standard methods to identify markers for oxygen utilization and BPD as outcomes in extremely premature infants. We further identified predictor gene sets for BPD based on transcriptomic data adjusted for gestational age at birth (GAB). RNA-Seq analysis was completed for CD8+ T cells from 145 subjects. Among the subjects with highest risk for BPD (born at <29 weeks gestational age (GA); n=72), 501 genes were associated with oxygen utilization. In the same set of subjects, 571 genes were differentially expressed in subjects with a diagnosis of BPD and 105 genes were different in BPD subjects as defined by physiologic challenge. A set of 92 genes could predict BPD with a moderately high degree of accuracy. We consistently observed dysregulation of TGFB, NRF2, HIPPO, and CD40-associated pathways in BPD. Using gene expression data from both premature and full-term subjects (n=116), we identified a 28 gene set that predicted the PRD status with a moderately high level of accuracy, which also were involved in TGFB signaling. Transcriptomic data from sort-purified peripheral blood CD8+ T cells from 145 preterm and full-term infants identified sets of molecular markers of inflammation associated with independent development of BPD in extremely premature infants at high risk for the disease and of PRD among the preterm and full-term subjects.


Assuntos
Displasia Broncopulmonar/sangue , Displasia Broncopulmonar/genética , Linfócitos T CD8-Positivos/imunologia , Nascimento Prematuro/sangue , Nascimento Prematuro/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/sangue , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Transcriptoma/genética , Biomarcadores/sangue , Feminino , Idade Gestacional , Humanos , Lactente Extremamente Prematuro/sangue , Recém-Nascido , Ativação Linfocitária , Masculino , Gravidez , Prognóstico , RNA-Seq
11.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30776794

RESUMO

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Assuntos
Separação Celular , Células Epiteliais/fisiologia , Pulmão/citologia , Doadores de Tecidos , Fatores Etários , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Queratina-5/genética , Queratina-5/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Fenótipo , Cultura Primária de Células , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análise de Célula Única
12.
Am J Pathol ; 190(2): 426-441, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837950

RESUMO

Collagen VI (COL6) is known for its role in a spectrum of congenital muscular dystrophies, which are often accompanied by respiratory dysfunction. However, little is known regarding the function of COL6 in the lung. We confirmed the presence of COL6 throughout the basement membrane region of mouse lung tissue. Lung structure and organization were studied in a previously described Col6a1-/- mouse, which does not produce detectable COL6 in the lung. The Col6a1-/- mouse displayed histopathologic alveolar and airway abnormalities. The airspaces of Col6a1-/- lungs appeared simplified, with larger (29%; P < 0.01) and fewer (31%; P < 0.001) alveoli. These airspace abnormalities included reduced isolectin B4+ alveolar capillaries and surfactant protein C-positive alveolar epithelial type-II cells. Alterations in lung function consistent with these histopathologic changes were evident. Col6a1-/- mice also displayed multiple airway changes, including increased branching (59%; P < 0.001), increased mucosal thickness (34%; P < 0.001), and increased epithelial cell density (13%; P < 0.001). Comprehensive transcriptome analysis revealed that the loss of COL6 is associated with reductions in integrin-paxillin-phosphatidylinositol 3-kinase signaling in vivo. In vitro, COL6 promoted steady-state phosphorylated paxillin levels and reduced cell density (16% to 28%; P < 0.05) at confluence. Inhibition of phosphatidylinositol 3-kinase, or its downstream effectors, resulted in increased cell density to a level similar to that seen on matrices lacking COL6.


Assuntos
Membrana Basal/patologia , Colágeno Tipo VI/fisiologia , Células Epiteliais/patologia , Pulmão/patologia , Alvéolos Pulmonares/patologia , Animais , Membrana Basal/metabolismo , Tamanho Celular , Células Epiteliais/metabolismo , Feminino , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/metabolismo , Transdução de Sinais
13.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619469

RESUMO

RATIONALE: The lung mesenchyme gives rise to multiple distinct lineages of cells in the mature respiratory system, including smooth muscle cells of the airway and vasculature. However, a thorough understanding of the specification and mesenchymal cell diversity in the human lung is lacking. METHODS: We completed single-cell RNA sequencing analysis of fetal human lung tissues. Canonical correlation analysis, clustering, cluster marker gene identification and t-distributed stochastic neighbour embedding representation was performed in Seurat. Cell populations were annotated using ToppFun. Immunohistochemistry and in situ hybridisation were used to validate spatiotemporal gene expression patterns for key marker genes. RESULTS: We identified molecularly distinct populations representing "committed" fetal human lung endothelial cells, pericytes and smooth muscle cells. Early endothelial lineages expressed "classic" endothelial cell markers (platelet endothelial cell adhesion molecule/CD31 and claudin 5), while pericytes expressed platelet-derived growth factor receptor-ß, Thy-1 membrane glycoprotein and basement membrane molecules (collagen IV, laminin and proteoglycans). We observed a large population of "nonspecific" human lung mesenchymal progenitor cells characterised by expression of collagen I and multiple elastin fibre genes (ELN, MFAP2 and FBN1). We closely characterised the diversity of mesenchymal lineages defined by α2-smooth muscle actin (ACTA2) expression. Two cell populations, with the highest levels of ACTA2 transcriptional activity, expressed unique sets of markers associated with airway or vascular smooth muscle cells. Spatiotemporal analysis of these marker genes confirmed early and persistent spatial specification of airway (HHIP, MYLK and IGF1) and vascular (NTRK3 and MEF2C) smooth muscle cells in the developing human lung. CONCLUSION: Our data suggest that specification of distinct airway and vascular smooth muscle cell phenotypes is established early in development and can be identified using the markers we provide.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Diferenciação Celular , Linhagem da Célula , Humanos , Pulmão , Miócitos de Músculo Liso
14.
Pediatr Res ; 87(5): 862-867, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726465

RESUMO

BACKGROUND: Data on the host factors that contribute to infection of young children by respiratory syncytial virus (RSV) are limited. The human chemokine receptor, CX3CR1, has recently been implicated as an RSV receptor. Here we evaluate a role for CX3CR1 in pediatric lung RSV infections. METHODS: CX3CR1 transcript levels in the upper and lower pediatric airways were assessed. Tissue localization and cell-specific expression was confirmed using in situ hybridization and immunohistochemistry. The role of CX3CR1 in RSV infection was also investigated using a novel physiological model of pediatric epithelial cells. RESULTS: Low levels of CX3CR1 transcript were often, but not always, expressed in both upper (62%) and lower airways (36%) of pediatric subjects. CX3CR1 transcript and protein expression was detected in epithelial cells of normal human pediatric lung tissues. CX3CR1 expression was readily detected on primary cultures of differentiated pediatric/infant human lung epithelial cells. RSV demonstrated preferential infection of CX3CR1-positive cells, and blocking CX3CR1/RSV interaction significantly decreased viral load. CONCLUSION: CX3CR1 is present in the airways of pediatric subjects where it may serve as a receptor for RSV infection. Furthermore, CX3CR1 appears to play a mechanistic role in mediating viral infection of pediatric airway epithelial cells in vitro.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Receptores Virais/fisiologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Linhagem Celular , Criança , Pré-Escolar , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Lactente , Recém-Nascido , Pulmão/metabolismo , Pulmão/virologia , Vírus Sincicial Respiratório Humano , Viroses
15.
J Pediatr ; 207: 130-135.e2, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30612812

RESUMO

OBJECTIVE: To use a large current prospective cohort of infants <29 weeks to compare bronchopulmonary dysplasia (BPD) rates in black and white infants. STUDY DESIGN: The Prematurity and Respiratory Outcome Program (PROP) enrolled 835 infants born in 2011-2013 at <29 weeks of gestation; 728 black or white infants survived to 36 weeks postmenstrual age (PMA). Logistic regression was used to compare BPD outcomes (defined as supplemental oxygen requirement at 36 weeks PMA) between the races, adjusted for gestational age (GA), antenatal steroid use, intubation at birth, and surfactant use at birth. RESULTS: Of 707 black or white infants with available BPD outcomes, BPD was lower in black infants (38% vs 45%), even though they were of significantly lower GA. At every GA, BPD was more common in white infants. The aOR for BPD was 0.60 (95% CI, 0.42-0.85; P = .004) for black infants compared with white infants after adjusting for GA. Despite the lower rate of BPD, black infants had a higher rate of first-year post-prematurity respiratory disease (black, 79%; white, 63%). CONCLUSIONS: In this large cohort of recently born preterm infants at <29 weeks GA, compared with white infants, black infants had a lower risk of BPD but an increased risk of persistent respiratory morbidity.


Assuntos
Negro ou Afro-Americano , Displasia Broncopulmonar/etnologia , Hospitalização/tendências , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Medição de Risco/métodos , Seguimentos , Idade Gestacional , Humanos , Doenças do Prematuro/etnologia , Morbidade/tendências , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , População Branca
16.
PLoS One ; 13(12): e0209095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550606

RESUMO

Basement membrane (BM) is an essential part of the extracellular matrix (ECM) that plays a crucial role in mechanical support and signaling to epithelial cells during lung development, homeostasis and repair. Abnormal composition and remodeling of the lung ECM have been associated with developmental abnormalities observed in multiple pediatric and adult respiratory diseases. Collagen VI (COL6) is a well-studied muscle BM component, but its role in the lung and its effect on pulmonary epithelium is largely undetermined. We report the presence of COLVI immediately subjacent to human airway and alveolar epithelium in the pediatric lung, in a location where it is likely to interact with epithelial cells. In vitro, both primary human lung epithelial cells and human lung epithelial cell lines displayed an increased rate of "wound healing" in response to a scratch injury when plated on COL6 as compared to other matrices. For the 16HBE cell line, wounds remained >5-fold larger for cells on COL1 (p<0.001) and >6-fold larger on matrigel (p<0.001), a prototypical basement membrane, when compared to COL6 (>96% closure at 10 hr). The effect of COL6 upon lung epithelial cell phenotype was associated with an increase in cell spreading. Three hours after initial plating, 16HBE cells showed >7-fold less spreading on matrigel (p<0.01), and >4-fold less spreading on COL1 (p<0.01) when compared to COL6. Importantly, the addition of COL6 to other matrices also enhanced cell spreading. Similar responses were observed for primary cells. Inhibitor studies indicated both integrin ß1 activity and activation of multiple signaling pathways was required for enhanced spreading on all matrices, with the PI3K/AKT pathway (PI3K, CDC42, RAC1) showing both significant and specific effects for spreading on COL6. Genetic gain-of-function experiments demonstrated enhanced PI3K/AKT pathway activity was sufficient to confer equivalent cell spreading on other matrices as compared to COL6. We conclude that COL6 has significant and specific effects upon human lung epithelial cell-autonomous functions.


Assuntos
Colágeno Tipo VI/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Colágeno Tipo VI/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Pulmão/fisiologia , Camundongos , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
17.
BMC Genet ; 19(1): 94, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342483

RESUMO

BACKGROUND: Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. RESULTS: The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. CONCLUSIONS: We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants.


Assuntos
Displasia Broncopulmonar/diagnóstico , Variação Genética , Displasia Broncopulmonar/genética , Estudos de Casos e Controles , DNA/química , DNA/metabolismo , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Sequenciamento do Exoma
18.
J Infect Dis ; 216(8): 1027-1037, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28962005

RESUMO

Background: Nearly all children are infected with respiratory syncytial virus (RSV) within the first 2 years of life, with a minority developing severe disease (1%-3% hospitalized). We hypothesized that an assessment of the adaptive immune system, using CD4+ T-lymphocyte transcriptomics, would identify gene expression correlates of disease severity. Methods: Infants infected with RSV representing extremes of clinical severity were studied. Mild illness (n = 23) was defined as a respiratory rate (RR) < 55 and room air oxygen saturation (SaO2) ≥ 97%, and severe illness (n = 23) was defined as RR ≥ 65 and SaO2 ≤ 92%. RNA from fresh, sort-purified CD4+ T cells was assessed by RNA sequencing. Results: Gestational age, age at illness onset, exposure to environmental tobacco smoke, bacterial colonization, and breastfeeding were associated (adjusted P < .05) with disease severity. RNA sequencing analysis reliably measured approximately 60% of the genome. Severity of RSV illness had the greatest effect size upon CD4 T-cell gene expression. Pathway analysis identified correlates of severity, including JAK/STAT, prolactin, and interleukin 9 signaling. We also identified genes and pathways associated with timing of symptoms and RSV group (A/B). Conclusions: These data suggest fundamental changes in adaptive immune cell phenotypes may be associated with RSV clinical severity.


Assuntos
Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/imunologia , Transcriptoma , Linfócitos T CD4-Positivos/imunologia , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Infecções por Vírus Respiratório Sincicial/virologia , Índice de Gravidade de Doença , Poluição por Fumaça de Tabaco
19.
Sci Rep ; 7(1): 1081, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439113

RESUMO

While all forms of tobacco exposure have negative health effects, the significance of exposure to electronic cigarettes (eCig) is not fully understood. Here, we studied the global effects of eCig on the micro RNA (miRNA) transcriptome in human lung epithelial cells. Primary human bronchial epithelial (NHBE) cells differentiated at air-liquid interface were exposed to eCig liquid. Exposure of NHBE to any eCig liquid resulted in the induction of oxidative stress-response genes including GCLM, GCLC, GPX2, NQO1 and HO-1. Vaporization of, and/or the presence of nicotine in, eCig liquid was associated with a greater response. We identified 578 miRNAs dysregulated by eCig exposure in NHBE, and 125 miRNA affected by vaporization of eCig liquid. Nicotine containing eCig vapor displayed the most profound effects upon miRNA expression. We selected 8 miRNAs (29A, 140, 126, 374A, 26A-2, 147B, 941 and 589) for further study. We validated increased expression of multiple miRNAs, including miR126, following eCig exposure. We also found significant reduction in the expression of two miR126 target genes, MYC and MRGPRX3, following exposure. These data demonstrated that eCig exposure has profound effects upon gene expression in human lung epithelial cells, some of which are epigenetically programmed at the level of miRNA regulation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , MicroRNAs/análise , Mucosa Respiratória/efeitos dos fármacos , Fumar , Células Cultivadas , Humanos , MicroRNAs/genética , Estresse Oxidativo , Estresse Fisiológico
20.
Pediatr Res ; 79(6): 940-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974307

RESUMO

BACKGROUND: Variability in the incidence and severity of bronchopulmonary dysplasia (BPD) among premature infants suggests that genetic susceptibility plays a role in pathogenesis. An assessment of copy number variants (CNV) in BPD subjects may help to identify loci that harbor genetic susceptibility factors. METHODS: We conducted a retrospective analysis of clinical DNA microarray data from our institution. We identified 19 BPD subjects, and 2 controls groups (full-term and preterm) with no lung-related disease. We reanalyzed raw data from each of these subjects to identify recurrent CNV loci in BPD subjects. RESULTS: We identified three loci (at 11q13.2, 16p13.3, and 22q11.23-q12.1) with recurrent CNV in BPD subjects. The frequency of these CNV was significantly higher in BPD subjects when compared with at least one control group. We interrogated 21 genes residing within the recurrent CNV regions for development-associated changes in expression. Fifteen genes demonstrated significant changes in expression between the pseudoglandular and canalicular stage in human lungs, a time commensurate with birth at highest risk for BPD. We also identified pathways represented by the genes present within the recurrent loci. CONCLUSION: These data identify novel loci that may harbor genes contributing to the genetic susceptibility of BPD.


Assuntos
Displasia Broncopulmonar/genética , Dosagem de Genes , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido Prematuro , Pulmão/fisiopatologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA