Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 97(3): 457-466, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31893465

RESUMO

Familial hypercholesterolaemia (FH) is a monogenic disorder characterised by high low-density lipoprotein cholesterol (LDL-C) concentrations and increased cardiovascular risk. However, in clinically defined FH cohorts worldwide, an FH-causing variant is only found in 40%-50% of the cases. The aim of this work was to characterise the genetic cause of the FH phenotype in Portuguese clinical FH patients. Between 1999 and 2017, 731 index patients (311 children and 420 adults) who met the Simon Broome diagnostic criteria had been referred to our laboratory. LDLR, APOB, PCSK9, APOE, LIPA, LDLRAP1, ABCG5/8 genes were analysed by polymerase chain reaction amplification and Sanger sequencing. The 6-SNP LDL-C genetic risk score (GRS) for polygenic hypercholesterolaemia was validated in the Portuguese population and cases with a GRS over the 25th percentile were considered to have a high likelihood of polygenic hypercholesterolaemia. An FH-causing mutation was found in 39% of patients (94% in LDLR, 5% APOB and 1% PCSK9), while at least 29% have polygenic hypercholesterolaemia and 1% have other lipid disorders. A genetic cause for the FH phenotype was found in 503 patients (69%). All known causes of the FH phenotype should be investigated in FH cohorts to ensure accurate diagnosis and appropriate management.


Assuntos
LDL-Colesterol/genética , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/genética , Erros Inatos do Metabolismo Lipídico/genética , Adolescente , Adulto , Apolipoproteína B-100/genética , Criança , Feminino , Humanos , Hiperlipoproteinemia Tipo II/patologia , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Adulto Jovem
2.
J Clin Lipidol ; 11(2): 477-484.e2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28502505

RESUMO

BACKGROUND: Lysosomal acid lipase deficiency (LALD) is an autosomal recessive disorder and an unrecognized cause of dyslipidemia. Patients usually present with dyslipidemia and altered liver function and mutations in LIPA gene are the underlying cause of LALD. OBJECTIVE: The aim of this study was to investigate LALD in individuals with severe dyslipidemia and/or liver steatosis. METHODS: Coding, splice regions, and promoter region of LIPA were sequenced by Sanger sequencing in a cohort of mutation-negative familial hypercholesterolemia (FH) patients (n = 492) and in a population sample comprising individuals with several types of dyslipidemia and/or liver steatosis (n = 258). RESULTS: This study led to the identification of LALD in 4 children referred to the Portuguese FH Study, all with a clinical diagnosis of FH. Mild liver dysfunction was present at the age of FH diagnosis; however, a diagnosis of LALD was not considered. No adults at the time of referral have been identified with LALD. CONCLUSION: LALD is a life-threatening disorder, and early identification is crucial for the implementation of specific treatment to avoid premature mortality. FH cohorts should be investigated to identify possible LALD patients, who will need appropriate treatment. These results highlight the importance of correctly identifying the etiology of the dyslipidemia.


Assuntos
Hiperlipoproteinemia Tipo II/complicações , Doença de Wolman/complicações , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Doença de Wolman/genética , Adulto Jovem , Doença de Wolman
3.
Biochem Biophys Res Commun ; 409(4): 799-802, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21624353

RESUMO

Tight junctions (TJs) are elaborate structures located on the apical region of epithelial cells that limit paracellular permeability. Tricellulin is a recently discovered TJ protein, which is concentrated at the structurally specialized tricellular TJs but also present at bicellular contacts between epithelial cells, namely in the stomach. Interestingly, several TJ proteins have been found in other than epithelial cells, as astrocytes, and tricellulin mRNA expression was reported in mature dendritic cells. These findings prompted us to look for tricellulin expression in both epithelial and immune cells in the stomach, as well as in microglia, the brain resident immunocompetent cells. Immunohistochemical analysis of human stomach tissue sections revealed peroxidase staining at three-corner contact sites, as well as at the contact between two adjacent epithelial cells, thus evidencing the expression of tricellulin not only at tricellullar but at bicellular junctions as well. Such analysis, further revealed tricellulin immunostaining in cells of the monocyte/macrophage lineage, scattered throughout the lamina propria. Cultured rat microglia exhibited a notorious tricellulin staining, consistent with an extensive expression of the protein along the cell, which was not absolutely coincident with the lysosomal marker CD68. Detection of mRNA expression by real-time PCR provided supportive evidence for the expression of the TJ protein in microglia. These data demonstrate for the first time that microglia express a TJ protein. Moreover, the expression of tricellulin both in microglia and in the stomach immune cells point to a possible role of this new TJ protein in the immune system.


Assuntos
Proteínas de Membrana/biossíntese , Microglia/imunologia , Junções Íntimas/imunologia , Animais , Humanos , Proteína 2 com Domínio MARVEL , Macrófagos/imunologia , Proteínas de Membrana/genética , Monócitos/imunologia , Ratos , Estômago/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA